Lin Yihan, Zhao Tong, Jian Xing, Farooqui Zishaan, Qu Xiaohui, He Chuan, Dinner Aaron R, Scherer Norbert F
Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA.
Biophys J. 2009 Mar 4;96(5):1911-7. doi: 10.1016/j.bpj.2008.11.021.
We perform single-molecule spatial tracking measurements of a DNA repair protein, the C-terminal domain of Ada (C-Ada) from Escherichia coli, moving on DNA extended by flow. The trajectories of single proteins labeled with a fluorophore are constructed. We analyze single-protein dwell times on DNA for different flow rates and conclude that sliding (with essentially no hopping) is the mechanism of C-Ada motion along stretched DNA. We also analyze the trajectory results with a drift-diffusion Langevin equation approach to elucidate the influence of flow on the protein motion; systematic variation of the flow enables one to estimate the microscopic friction. We integrate the step-size probability distribution to obtain a version of the fluctuation theorem that articulates the relation between the entropy production and consumption under the adjustable drag (i.e., bias) from the flow. This expression allows validation of the Langevin equation description of the motion. Comparison of the rate of sliding with recent computer simulations of DNA repair suggests that C-Ada could conduct its repair function while moving at near the one-dimensional diffusion limit.
我们对一种DNA修复蛋白——来自大肠杆菌的Ada蛋白C端结构域(C-Ada)在流动伸展的DNA上的运动进行了单分子空间跟踪测量。构建了用荧光团标记的单个蛋白的轨迹。我们分析了不同流速下单蛋白在DNA上的停留时间,并得出结论:滑动(基本无跳跃)是C-Ada沿着拉伸DNA运动的机制。我们还采用漂移-扩散朗之万方程方法分析轨迹结果,以阐明流动对蛋白运动的影响;流速的系统变化使人们能够估计微观摩擦力。我们对步长概率分布进行积分,得到一个涨落定理的版本,该定理阐述了在流动产生的可调阻力(即偏差)下熵产生与消耗之间的关系。这个表达式可以验证朗之万方程对运动的描述。将滑动速率与最近的DNA修复计算机模拟结果进行比较表明,C-Ada在接近一维扩散极限的速度下移动时可以执行其修复功能。