Suppr超能文献

The H(+)-ATPase of the plasma membrane from yeast. Kinetics of ATP hydrolysis in native membranes, isolated and reconstituted enzymes.

作者信息

Wach A, Ahlers J, Gräber P

机构信息

Institut für Biochemie und Molekularbiologie, Freie Universität Berlin.

出版信息

Eur J Biochem. 1990 May 20;189(3):675-82. doi: 10.1111/j.1432-1033.1990.tb15536.x.

Abstract

The H(+)-ATPase of the plasma membrane from Saccharomyces cerevisiae has been isolated, purified and reconstituted into asolectin liposomes. The kinetics of ATP hydrolysis have been compared for the H(+)-ATPase in the plasma membrane, in a protein/lipid/detergent micelle (isolated enzyme) and in asolectin proteoliposomes (reconstituted enzyme). In all three cases the kinetics of ATP hydrolysis can be described by Michaelis-Menten kinetics with Km = 0.2 mM MgATP (plasma membranes), Km = 2.4 mM MgATP (isolated enzyme) and Km = 0.2 mM MgATP (reconstituted enzyme). However, the maximal turnover decreases only by a factor of two during isolation of the enzyme and does not change during reconstitution; the activation of the H(+)-ATPase by free Mg2+ is also only slightly influenced by the detergent. The dissociation constant of the enzyme-Mg2+ complex Ka, does not alter during isolation and the dissociation constant of the enzyme-substrate complex, Ks, increases from Ks = 30 microM (plasma membranes) to Ks = 90 microM (isolated enzyme). ATP binding to the H(+)-ATPase ('single turnover' conditions) for the isolated and the reconstituted enzyme resulted in both cases in a second-order rate constant k1 = 2.6 x 10(4) M-1.s-1. From these observations it is concluded that the detergent used (Zwittergent TM 3-14) interacts reversibly with the H(+)-ATPase and that practically all H(+)-ATPase molecules are reconstituted into the liposomes with the ATP-binding site being directed to the outside of the vesicle.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验