Suppr超能文献

跨运动行为的膈肌肌电图活动的慢性评估。

Chronic assessment of diaphragm muscle EMG activity across motor behaviors.

机构信息

Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.

出版信息

Respir Physiol Neurobiol. 2011 Jul 31;177(2):176-82. doi: 10.1016/j.resp.2011.03.011. Epub 2011 Mar 15.

Abstract

The diaphragm muscle is the main inspiratory muscle in mammals. Quantitative analyses documenting the reliability of chronic diaphragm EMG recordings are lacking. Assessment of ventilatory and non-ventilatory motor behaviors may facilitate evaluating diaphragm EMG activity over time. We hypothesized that normalization of diaphragm EMG amplitude across behaviors provides stable and reliable parameters for longitudinal assessments of diaphragm activity. We found that diaphragm EMG activity shows substantial intra-animal variability over 6 weeks, with coefficient of variation (CV) for different behaviors ∼ 29-42%. Normalization of diaphragm EMG activity to near maximal behaviors (e.g., deep breathing) reduced intra-animal variability over time (CV ∼ 22-29%). Plethysmographic measurements of eupneic ventilation were also stable over 6 weeks (CV ∼ 13% for minute ventilation). Thus, stable and reliable measurements of diaphragm EMG activity can be obtained longitudinally using chronically implanted electrodes by examining multiple motor behaviors. By quantitatively determining the reliability of longitudinal diaphragm EMG analyses, we provide an important tool for evaluating the progression of diseases or injuries that impair ventilation.

摘要

膈肌是哺乳动物的主要吸气肌。缺乏记录慢性膈肌肌电图记录可靠性的定量分析。评估通气和非通气运动行为可以促进随时间推移对膈肌肌电图活动的评估。我们假设,跨行为的膈肌肌电图幅度的归一化提供了用于膈肌活动纵向评估的稳定和可靠参数。我们发现,膈肌肌电图活动在 6 周内表现出显著的个体内变异性,不同行为的变异系数(CV)约为 29-42%。将膈肌肌电图活动归一化为接近最大的行为(例如深呼吸)随时间降低了个体内变异性(CV 约为 22-29%)。 plethysmographic 测量的安静通气也在 6 周内保持稳定(分钟通气量的 CV 约为 13%)。因此,通过使用慢性植入电极检查多种运动行为,可以获得稳定和可靠的膈肌肌电图活动的纵向测量。通过定量确定纵向膈肌肌电图分析的可靠性,我们为评估影响通气的疾病或损伤的进展提供了重要工具。

相似文献

1
Chronic assessment of diaphragm muscle EMG activity across motor behaviors.
Respir Physiol Neurobiol. 2011 Jul 31;177(2):176-82. doi: 10.1016/j.resp.2011.03.011. Epub 2011 Mar 15.
2
Diaphragm muscle activity across respiratory motor behaviors in awake and lightly anesthetized rats.
J Appl Physiol (1985). 2018 Apr 1;124(4):915-922. doi: 10.1152/japplphysiol.01004.2017. Epub 2018 Jan 4.
3
Non-stationarity and power spectral shifts in EMG activity reflect motor unit recruitment in rat diaphragm muscle.
Respir Physiol Neurobiol. 2013 Jan 15;185(2):400-9. doi: 10.1016/j.resp.2012.08.020. Epub 2012 Sep 7.
4
Diaphragm motor unit recruitment in rats.
Respir Physiol Neurobiol. 2010 Aug 31;173(1):101-6. doi: 10.1016/j.resp.2010.07.001. Epub 2010 Jul 8.
5
BDNF effects on functional recovery across motor behaviors after cervical spinal cord injury.
J Neurophysiol. 2017 Feb 1;117(2):537-544. doi: 10.1152/jn.00654.2016. Epub 2016 Nov 9.
6
Hypercapnia impacts neural drive and timing of diaphragm neuromotor control.
J Neurophysiol. 2024 Dec 1;132(6):1966-1976. doi: 10.1152/jn.00466.2024. Epub 2024 Nov 16.
7
A Simple, Low-Cost Implant for Reliable Diaphragm EMG Recordings in Awake, Behaving Rats.
eNeuro. 2025 Feb 19;12(2). doi: 10.1523/ENEURO.0444-24.2025. Print 2025 Feb.
8
Recruitment of rat diaphragm motor units across motor behaviors with different levels of diaphragm activation.
J Appl Physiol (1985). 2014 Dec 1;117(11):1308-16. doi: 10.1152/japplphysiol.01395.2013. Epub 2014 Sep 25.
9
Identification of eupneic breathing using machine learning.
J Neurophysiol. 2024 Sep 1;132(3):678-684. doi: 10.1152/jn.00230.2024. Epub 2024 Jul 25.
10
Activity of costal and crural diaphragm during progressive hypoxia or hypercapnia.
J Appl Physiol (1985). 1995 May;78(5):1985-92. doi: 10.1152/jappl.1995.78.5.1985.

引用本文的文献

1
Impact of upper cervical spinal cord hemisection on diaphragm neuromotor control.
J Neurophysiol. 2025 Aug 1;134(2):698-714. doi: 10.1152/jn.00279.2025. Epub 2025 Jul 28.
2
Perfusion pressure as a determinant of respiratory function outcomes in unilateral biportal lumbar endoscopic procedures.
Front Pharmacol. 2025 May 30;16:1593118. doi: 10.3389/fphar.2025.1593118. eCollection 2025.
3
Electrical stimulation of the sciatic nerve restores inspiratory diaphragm function in mice after spinal cord injury.
Front Neural Circuits. 2025 Jan 22;18:1480291. doi: 10.3389/fncir.2024.1480291. eCollection 2024.
4
A Simple, Low-Cost Implant for Reliable Diaphragm EMG Recordings in Awake, Behaving Rats.
eNeuro. 2025 Feb 19;12(2). doi: 10.1523/ENEURO.0444-24.2025. Print 2025 Feb.
5
Hypercapnia impacts neural drive and timing of diaphragm neuromotor control.
J Neurophysiol. 2024 Dec 1;132(6):1966-1976. doi: 10.1152/jn.00466.2024. Epub 2024 Nov 16.
6
Physiological analyses of swallowing changes due to chronic obstructive pulmonary disease in anesthetized male rats.
Front Physiol. 2024 Aug 7;15:1445336. doi: 10.3389/fphys.2024.1445336. eCollection 2024.
7
Sex differences in spontaneous respiratory recovery following chronic C2 hemisection.
J Appl Physiol (1985). 2024 Jul 1;137(1):166-180. doi: 10.1152/japplphysiol.00040.2024. Epub 2024 Jun 13.
8
Cervical spinal cord hemisection impacts sigh and the respiratory reset in male rats.
Physiol Rep. 2024 Mar;12(5):e15973. doi: 10.14814/phy2.15973.
9
V2a neurons restore diaphragm function in mice following spinal cord injury.
Proc Natl Acad Sci U S A. 2024 Mar 12;121(11):e2313594121. doi: 10.1073/pnas.2313594121. Epub 2024 Mar 5.
10
Neuromotor control of spontaneous quiet breathing in awake rats evaluated by assessments of diaphragm EMG stationarity.
J Neurophysiol. 2023 Nov 1;130(5):1344-1357. doi: 10.1152/jn.00267.2023. Epub 2023 Oct 25.

本文引用的文献

1
Diaphragm motor unit recruitment in rats.
Respir Physiol Neurobiol. 2010 Aug 31;173(1):101-6. doi: 10.1016/j.resp.2010.07.001. Epub 2010 Jul 8.
2
The hypoxia-induced facilitation of augmented breaths is suppressed by the common effect of carbonic anhydrase inhibition.
Respir Physiol Neurobiol. 2010 May 31;171(3):201-11. doi: 10.1016/j.resp.2010.04.002. Epub 2010 Apr 9.
3
Correlation of respiratory activity of contralateral diaphragm muscles for evaluation of recovery following hemiparesis.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:404-7. doi: 10.1109/IEMBS.2009.5334892.
5
Neuromuscular adaptations to respiratory muscle inactivity.
Respir Physiol Neurobiol. 2009 Nov 30;169(2):133-40. doi: 10.1016/j.resp.2009.09.002. Epub 2009 Sep 8.
6
Role of neurotrophins in recovery of phrenic motor function following spinal cord injury.
Respir Physiol Neurobiol. 2009 Nov 30;169(2):218-25. doi: 10.1016/j.resp.2009.08.008. Epub 2009 Aug 22.
7
Graded unilateral cervical spinal cord injury and respiratory motor recovery.
Respir Physiol Neurobiol. 2009 Feb 28;165(2-3):245-53. doi: 10.1016/j.resp.2008.12.010. Epub 2008 Dec 30.
8
Formation and maintenance of ventilatory long-term facilitation require NMDA but not non-NMDA receptors in awake rats.
J Appl Physiol (1985). 2008 Sep;105(3):942-50. doi: 10.1152/japplphysiol.01274.2006. Epub 2008 Jun 26.
9
Key aspects of phrenic motoneuron and diaphragm muscle development during the perinatal period.
J Appl Physiol (1985). 2008 Jun;104(6):1818-27. doi: 10.1152/japplphysiol.01192.2007. Epub 2008 Apr 10.
10
EMG-based detection of inspiration in the rat diaphragm muscle.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:1204-7. doi: 10.1109/IEMBS.2006.260688.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验