Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States.
Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States.
J Neurophysiol. 2024 Sep 1;132(3):678-684. doi: 10.1152/jn.00230.2024. Epub 2024 Jul 25.
The diaphragm muscle (DIAm) is the primary inspiratory muscle in mammals. In awake animals, considerable heterogeneity in the electromyographic (EMG) activity of the DIAm reflects varied ventilatory and nonventilatory behaviors. Experiments in awake animals are an essential component to understanding the neuromotor control of breathing, which has especially begun to be appreciated within the last decade. However, insofar as the intent is to study the control of breathing, it is paramount to identify DIAm EMG activity that in fact reflects breathing. Current strategies for doing so in a reproducible, reliable, and efficient fashion are lacking. In the present article, we evaluated DIAm EMG from awake animals using hierarchical clustering across four-dimensional feature space to classify eupneic breathing. Our model, which can be implemented with automated threshold of the clustering dendrogram, successfully identified eupneic breathing with high F1 score (0.92), specificity (0.70), and accuracy (0.88), suggesting that it is a robust and reliable tool for investigating the neural control of breathing. The heterogeneity of diaphragm muscle (DIAm) activity in awake animals reflects real motor behavior diversity but makes assessments of eupneic breathing challenging. The present article uses an unsupervised machine learning model to identify eupneic breathing amidst a deluge of different DIAm electromyography (EMG) burst patterns in awake rats. This technique offers a scalable and reliable tool that improves efficiency of DIAm EMG analysis and minimizes potential sources of bias.
膈肌(DIAm)是哺乳动物的主要吸气肌。在清醒动物中,膈肌肌电图(EMG)活动的显著异质性反映了不同的通气和非通气行为。清醒动物实验是理解呼吸神经运动控制的重要组成部分,这在过去十年中尤其受到重视。然而,就研究呼吸控制而言,至关重要的是要确定实际上反映呼吸的 DIAm EMG 活动。目前缺乏以可重复、可靠和有效的方式做到这一点的策略。在本文中,我们使用分层聚类在四维特征空间中评估清醒动物的 DIAm EMG,以对 eupneic 呼吸进行分类。我们的模型可以使用聚类树状图的自动阈值来实现,它成功地以高 F1 评分(0.92)、特异性(0.70)和准确性(0.88)识别了 eupneic 呼吸,表明它是一种强大而可靠的工具,可用于研究呼吸的神经控制。清醒动物膈肌(DIAm)活动的异质性反映了真实的运动行为多样性,但使得评估 eupneic 呼吸具有挑战性。本文使用无监督机器学习模型来识别清醒大鼠中淹没在不同 DIAm 肌电图(EMG)爆发模式中的 eupneic 呼吸。这种技术提供了一种可扩展且可靠的工具,可提高 DIAm EMG 分析的效率,并最大限度地减少潜在的偏差来源。