Suppr超能文献

大递归神经元网络中前馈结构发展的限制。

Limits to the development of feed-forward structures in large recurrent neuronal networks.

机构信息

Functional Neural Circuits Group, Faculty of Biology, Albert-Ludwig University of Freiburg Germany.

出版信息

Front Comput Neurosci. 2011 Feb 14;4:160. doi: 10.3389/fncom.2010.00160. eCollection 2011.

Abstract

Spike-timing dependent plasticity (STDP) has traditionally been of great interest to theoreticians, as it seems to provide an answer to the question of how the brain can develop functional structure in response to repeated stimuli. However, despite this high level of interest, convincing demonstrations of this capacity in large, initially random networks have not been forthcoming. Such demonstrations as there are typically rely on constraining the problem artificially. Techniques include employing additional pruning mechanisms or STDP rules that enhance symmetry breaking, simulating networks with low connectivity that magnify competition between synapses, or combinations of the above. In this paper, we first review modeling choices that carry particularly high risks of producing non-generalizable results in the context of STDP in recurrent networks. We then develop a theory for the development of feed-forward structure in random networks and conclude that an unstable fixed point in the dynamics prevents the stable propagation of structure in recurrent networks with weight-dependent STDP. We demonstrate that the key predictions of the theory hold in large-scale simulations. The theory provides insight into the reasons why such development does not take place in unconstrained systems and enables us to identify biologically motivated candidate adaptations to the balanced random network model that might enable it.

摘要

尖峰时间依赖可塑性 (STDP) 一直是理论学家非常感兴趣的话题,因为它似乎为大脑如何针对重复刺激发展出功能结构提供了答案。然而,尽管对此有很高的兴趣,但在大型、最初随机的网络中还没有令人信服的证明这种能力的证据。现有的此类证明通常依赖于人为地限制问题。技术包括采用额外的修剪机制或增强对称性破坏的 STDP 规则、模拟连接性较低的网络以放大突触之间的竞争,或者上述两者的组合。在本文中,我们首先回顾了在递归网络中进行 STDP 时会产生不可推广结果的高风险建模选择。然后,我们开发了一种用于随机网络中前馈结构发展的理论,并得出结论,动力系统中的不稳定平衡点阻止了具有权重依赖性 STDP 的递归网络中结构的稳定传播。我们证明了该理论的主要预测在大规模模拟中成立。该理论深入了解了为什么在不受限制的系统中不会发生这种发展的原因,并使我们能够确定可能使其能够实现的、受生物启发的平衡随机网络模型的候选适应性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fddd/3042733/7746c768fe7e/fncom-04-00160-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验