递归神经元网络中由脉冲时间依赖可塑性导致的网络结构的出现IV:递归连接之间突触通路的构建
Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks IV: structuring synaptic pathways among recurrent connections.
作者信息
Gilson Matthieu, Burkitt Anthony N, Grayden David B, Thomas Doreen A, van Hemmen J Leo
机构信息
Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia.
出版信息
Biol Cybern. 2009 Dec;101(5-6):427-44. doi: 10.1007/s00422-009-0346-1. Epub 2009 Nov 24.
In neuronal networks, the changes of synaptic strength (or weight) performed by spike-timing-dependent plasticity (STDP) are hypothesized to give rise to functional network structure. This article investigates how this phenomenon occurs for the excitatory recurrent connections of a network with fixed input weights that is stimulated by external spike trains. We develop a theoretical framework based on the Poisson neuron model to analyze the interplay between the neuronal activity (firing rates and the spike-time correlations) and the learning dynamics, when the network is stimulated by correlated pools of homogeneous Poisson spike trains. STDP can lead to both a stabilization of all the neuron firing rates (homeostatic equilibrium) and a robust weight specialization. The pattern of specialization for the recurrent weights is determined by a relationship between the input firing-rate and correlation structures, the network topology, the STDP parameters and the synaptic response properties. We find conditions for feed-forward pathways or areas with strengthened self-feedback to emerge in an initially homogeneous recurrent network.
在神经网络中,由尖峰时间依赖可塑性(STDP)引起的突触强度(或权重)变化被认为会产生功能性网络结构。本文研究了对于具有固定输入权重且由外部尖峰序列刺激的网络,这种现象是如何在兴奋性递归连接中发生的。当网络由均匀泊松尖峰序列的相关池刺激时,我们基于泊松神经元模型开发了一个理论框架,以分析神经元活动(放电率和尖峰时间相关性)与学习动态之间的相互作用。STDP既能导致所有神经元放电率的稳定(稳态平衡),又能导致强大的权重专业化。递归权重的专业化模式由输入放电率与相关结构、网络拓扑、STDP参数以及突触响应特性之间的关系决定。我们发现了在初始均匀的递归网络中出现前馈通路或具有增强自反馈区域的条件。