Suppr超能文献

人体关节软骨的交叉弛豫成像。

Cross-relaxation imaging of human articular cartilage.

机构信息

Department of Electrical Engineering, Magnetic Resonance Systems Research Laboratory, Stanford University, Stanford, California 94305-9510, USA.

出版信息

Magn Reson Med. 2011 Sep;66(3):725-34. doi: 10.1002/mrm.22865. Epub 2011 Mar 17.

Abstract

In this article, cross-relaxation imaging is applied to human ex vivo knee cartilage, and correlations of the cross-relaxation imaging parameters with macromolecular content in articular cartilage are reported. We show that, unlike the more commonly used magnetization transfer ratio, the bound pool fraction, the cross-relaxation rate (k) and the longitudinal relaxation time (T(1)) vary with depth and can therefore provide insight into the differences between the top and bottom layers of articular cartilage. Our cross-relaxation imaging model is more sensitive to macromolecular content in the top layers of cartilage, with bound pool fraction showing moderate correlations with proteoglycan content, and k and T(1) exhibiting moderate correlations with collagen.

摘要

在本文中,我们将交叉弛豫成像应用于人体离体膝关节软骨,并报告了交叉弛豫成像参数与关节软骨中大分子含量的相关性。我们发现,与更常用的磁化传递率不同,结合池分数、交叉弛豫率(k)和纵向弛豫时间(T1)随深度而变化,因此可以深入了解关节软骨顶层和底层之间的差异。我们的交叉弛豫成像模型对软骨顶层的大分子含量更为敏感,其中结合池分数与蛋白聚糖含量具有中度相关性,而 k 和 T1 与胶原具有中度相关性。

相似文献

1
Cross-relaxation imaging of human articular cartilage.
Magn Reson Med. 2011 Sep;66(3):725-34. doi: 10.1002/mrm.22865. Epub 2011 Mar 17.
2
Analysis of water-macromolecule proton magnetization transfer in articular cartilage.
Magn Reson Med. 1993 Feb;29(2):211-5. doi: 10.1002/mrm.1910290209.
3
Rapid multicomponent T2 analysis of the articular cartilage of the human knee joint at 3.0T.
J Magn Reson Imaging. 2014 May;39(5):1191-7. doi: 10.1002/jmri.24290. Epub 2013 Sep 23.
4
T(2) relaxation time mapping reveals age- and species-related diversity of collagen network architecture in articular cartilage.
Osteoarthritis Cartilage. 2006 Dec;14(12):1265-71. doi: 10.1016/j.joca.2006.06.002. Epub 2006 Jul 14.
5
Quantitative and qualitative assessment of articular cartilage in the goat knee with magnetization transfer imaging.
Magn Reson Imaging. 2001 Dec;19(10):1279-86. doi: 10.1016/s0730-725x(01)00433-7.
6
[Hyaline articular cartilage in MR tomography of the knee joint at 1.5 T].
Rofo. 1988 Jun;148(6):648-51. doi: 10.1055/s-2008-1048267.
8
Biexponential T relaxation estimation of human knee cartilage in vivo at 3T.
J Magn Reson Imaging. 2018 Mar;47(3):809-819. doi: 10.1002/jmri.25778. Epub 2017 May 31.
9
Longitudinal evaluation of T1ρ and T2 spatial distribution in osteoarthritic and healthy medial knee cartilage.
Osteoarthritis Cartilage. 2014 Jan;22(1):51-62. doi: 10.1016/j.joca.2013.10.014. Epub 2013 Nov 2.

引用本文的文献

1
Cartilage compositional MRI-a narrative review of technical development and clinical applications over the past three decades.
Skeletal Radiol. 2024 Sep;53(9):1761-1781. doi: 10.1007/s00256-024-04734-z. Epub 2024 Jul 9.
3
Test-retest reliability of myelin imaging in the human spinal cord: Measurement errors versus region- and aging-induced variations.
PLoS One. 2018 Jan 2;13(1):e0189944. doi: 10.1371/journal.pone.0189944. eCollection 2018.
4
A nuclear magnetic resonance study of water in aggrecan solutions.
R Soc Open Sci. 2016 Mar 9;3(3):150705. doi: 10.1098/rsos.150705. eCollection 2016 Mar.
7
UTE bi-component analysis of T2* relaxation in articular cartilage.
Osteoarthritis Cartilage. 2016 Feb;24(2):364-73. doi: 10.1016/j.joca.2015.08.017. Epub 2015 Sep 14.
9
Rapid multicomponent relaxometry in steady state with correction of magnetization transfer effects.
Magn Reson Med. 2016 Apr;75(4):1423-33. doi: 10.1002/mrm.25672. Epub 2015 May 8.
10
Cross-relaxation imaging of human patellar cartilage in vivo at 3.0T.
Osteoarthritis Cartilage. 2014 Oct;22(10):1568-76. doi: 10.1016/j.joca.2014.06.004.

本文引用的文献

1
Depth-wise progression of osteoarthritis in human articular cartilage: investigation of composition, structure and biomechanics.
Osteoarthritis Cartilage. 2010 Jan;18(1):73-81. doi: 10.1016/j.joca.2009.08.003. Epub 2009 Aug 29.
2
Multicomponent T2 relaxation analysis in cartilage.
Magn Reson Med. 2009 Apr;61(4):803-9. doi: 10.1002/mrm.21926.
3
Quantitative magnetization transfer imaging using balanced SSFP.
Magn Reson Med. 2008 Sep;60(3):691-700. doi: 10.1002/mrm.21705.
4
Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST).
Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2266-70. doi: 10.1073/pnas.0707666105. Epub 2008 Feb 11.
5
A comparison between equations describing in vivo MT: the effects of noise and sequence parameters.
J Magn Reson. 2008 Apr;191(2):171-83. doi: 10.1016/j.jmr.2007.12.012. Epub 2007 Dec 25.
6
T(2) relaxation time mapping reveals age- and species-related diversity of collagen network architecture in articular cartilage.
Osteoarthritis Cartilage. 2006 Dec;14(12):1265-71. doi: 10.1016/j.joca.2006.06.002. Epub 2006 Jul 14.
9
T1, T2 relaxation and magnetization transfer in tissue at 3T.
Magn Reson Med. 2005 Sep;54(3):507-12. doi: 10.1002/mrm.20605.
10
Cross-relaxation imaging reveals detailed anatomy of white matter fiber tracts in the human brain.
Neuroimage. 2004 Sep;23(1):409-24. doi: 10.1016/j.neuroimage.2004.04.029.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验