University Hospital Department of Geriatrics, Memory Clinic, Schanzenstrasse 55, CH 4031 Basel, Switzerland.
Alzheimers Res Ther. 2011 Mar 21;3(2):9. doi: 10.1186/alzrt68.
Novel compounds with potential to attenuate or stop the progression of Alzheimer's disease (AD) from its presymptomatic stage to dementia are being tested in man. The study design commonly used is the long-term randomized, placebo-controlled trial (RPCT), meaning that many patients will receive placebo for 18 months or longer. It is ethically problematic to expose presymptomatic AD patients, who by definition are at risk of developing dementia, to prolonged placebo treatment. As an alternative to long-term RPCTs we propose a novel clinical study design, termed the placebo group simulation approach (PGSA), using mathematical models to forecast outcomes of presymptomatic AD patients from their own baseline data. Forecasted outcomes are compared with outcomes observed on candidate drugs, thus replacing a concomitant placebo group.
First models were constructed using mild cognitive impairment (MCI) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. One outcome is the Alzheimer Disease Assessment Scale - cognitive subscale (ADAScog) score after 24 months, predicted in a linear regression model; the other is the trajectory over 36 months of a composite neuropsychological test score (Neuro-Psychological Battery (NP-Batt)), using a mixed model. Demographics and clinical, biological and neuropsychological baseline values were tested as potential predictors in both models.
ADAScog scores after 24 months are predicted from gender, obesity, Functional Assessment Questionnaire (FAQ) and baseline scores of Mini-Mental State Examination, ADAScog and NP-Batt with an R2 of 0.63 and a residual standard deviation of 0.67, allowing reasonably precise estimates of sample means. The model of the NP-Batt trajectory has random intercepts and slopes and fixed effects for body mass index, time, apolipoprotein E4, age, FAQ, baseline scores of ADAScog and NP-Batt, and four interaction terms. Estimates of the residual standard deviation range from 0.3 to 0.5 on a standard normal scale. If novel drug candidates are expected to diminish the negative slope of scores with time, a change of 0.04 per year could be detected in samples of 400 with a power of about 80%.
First PGSA models derived from ADNI MCI data allow prediction of cognitive endpoints and trajectories that correspond well with real observed values. Corroboration of these models with data from other observational studies is ongoing. It is suggested that the PGSA may complement RPCT designs in forthcoming long-term drug studies with presymptomatic AD individuals.
具有减轻或阻止阿尔茨海默病(AD)从无症状期发展为痴呆症的潜力的新型化合物正在人体中进行测试。通常使用的研究设计是长期随机、安慰剂对照试验(RPCT),这意味着许多患者将接受长达 18 个月或更长时间的安慰剂治疗。将无症状的 AD 患者暴露于延长的安慰剂治疗中在伦理上存在问题,因为这些患者按照定义处于发展为痴呆症的风险之中。作为长期 RPCT 的替代方法,我们提出了一种新的临床研究设计,称为安慰剂组模拟方法(PGSA),该方法使用数学模型根据患者自身的基线数据预测无症状 AD 患者的预后。预测结果与候选药物的观察结果进行比较,从而替代伴随的安慰剂组。
首先,使用来自阿尔茨海默病神经影像学倡议(ADNI)数据库的轻度认知障碍(MCI)数据构建模型。一个结果是 24 个月后的阿尔茨海默病评估量表 - 认知子量表(ADAScog)评分,该评分在线性回归模型中进行预测;另一个结果是使用混合模型预测复合神经心理学测试评分(神经心理学电池(NP-Batt))在 36 个月内的轨迹。在这两个模型中,性别、肥胖、功能评估问卷(FAQ)和简易精神状态检查、ADAScog 和 NP-Batt 的基线评分等临床、生物学和神经心理学基线值被测试为潜在预测因子。
24 个月后的 ADAScog 评分可以通过性别、肥胖、功能评估问卷(FAQ)和简易精神状态检查、ADAScog 和 NP-Batt 的基线评分进行预测,模型的 R2 为 0.63,残差标准差为 0.67,允许对样本均值进行相当精确的估计。NP-Batt 轨迹模型具有随机截距和斜率,以及体重指数、时间、载脂蛋白 E4、年龄、FAQ、ADAScog 和 NP-Batt 的基线评分以及四个交互项的固定效应。标准正态尺度上的残差标准差估计值在 0.3 到 0.5 之间。如果新型候选药物有望降低随时间变化的评分的负斜率,那么在 400 名样本中,每年 0.04 的变化可以检测到,其功率约为 80%。
首先,从 ADNI MCI 数据中得出的 PGSA 模型允许预测认知终点和轨迹,这些终点和轨迹与实际观察值非常吻合。正在进行与其他观察性研究数据的验证。建议在未来针对无症状 AD 个体的长期药物研究中,PGSA 可以补充 RPCT 设计。