Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
Future Med Chem. 2009 Apr;1(1):49-63. doi: 10.4155/fmc.09.7.
The understanding of biomolecular interactions ultimately depends on knowledge about the structural and dynamic details of the interacting system. Rational structure-based drug design implements computational methodology in this rationale.
Together with increasing throughput of structural biology, molecular modeling has progressively contributed to rational drug design and elucidation of nontoxic and patient-tailored interventions, helping to make drug development more cost-efficient. But in this challenging time for the pharmaceutical industry, the successful discovery of novel therapeutics should rely on integration of computational modeling with experimentation when it comes to ligand-binding energetics, system flexibility and genetic diversity/heterogeneity of the target. Moreover, it appears that many drugs--even those for which specific receptors have been identified--intercalate in biological membranes, which could also become the actual target.
Understanding the drug-target and drug-unwanted-target interactions at the atomic level is fundamental in the initial phases of the drug development process. Molecular dynamics simulations and complementary computational methods are already contributing in this endeavor for the soluble pharmacological targets and show an increasing importance in the understanding of membrane-ligand interactions.
生物分子相互作用的理解最终取决于对相互作用系统的结构和动态细节的了解。基于结构的理性药物设计在这种原理下实现了计算方法。
随着结构生物学通量的增加,分子建模逐渐为理性药物设计和阐明无毒和个体化干预措施做出了贡献,有助于提高药物开发的成本效益。但在制药行业面临挑战的时期,新型治疗药物的成功发现应该依赖于计算模型与实验的结合,涉及配体结合能、系统灵活性和目标的遗传多样性/异质性。此外,似乎许多药物——即使已经确定了特定的受体——也会插入生物膜中,这也可能成为实际的靶点。
在药物开发过程的初始阶段,在原子水平上理解药物-靶标和药物-非靶标相互作用是基础。分子动力学模拟和互补计算方法已经为可溶性药理靶标做出了贡献,并在理解膜-配体相互作用方面显示出越来越重要的作用。