Suppr超能文献

高通量方法在组合药物发现中的应用。

High-throughput methods for combinatorial drug discovery.

机构信息

Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA.

出版信息

Sci Transl Med. 2013 Oct 2;5(205):205rv1. doi: 10.1126/scitranslmed.3006667.

Abstract

A more nuanced approach to drug design is to use multiple drugs in combination to target interacting or complementary pathways. Drug combination treatments have shown higher efficacy, fewer side effects, and less toxicity compared to single-drug treatment. In this Review, we focus on the use of high-throughput biological measurements (genetics, transcripts, and chemogenetic interactions) and the computational methods they necessitate to further combinatorial drug design (CDD). We highlight the state-of-the-art analytical methods, including network analysis, integrative informatics, and dynamic molecular modeling, that have been used successfully in CDD. Finally, we present an exhaustive list of the publicly available data and methodological resources available to the community. Such next-generation technologies that enable the measurement of millions of cellular data points simultaneously may usher in a new paradigm in drug discovery, where medicine is viewed as a system of interacting genes and pathways rather than the result of an individual protein or gene.

摘要

更细致入微的药物设计方法是使用多种药物联合靶向相互作用或互补途径。与单一药物治疗相比,药物联合治疗显示出更高的疗效、更少的副作用和更低的毒性。在这篇综述中,我们重点介绍了使用高通量生物学测量(遗传学、转录本和化学生物学相互作用)以及它们所需的计算方法来进一步进行组合药物设计(CDD)。我们强调了成功应用于 CDD 的最先进的分析方法,包括网络分析、综合信息学和动态分子建模。最后,我们列出了社区可获得的公开可用数据和方法资源的详尽清单。这种能够同时测量数百万个细胞数据点的下一代技术可能开创药物发现的新模式,在这种模式中,医学被视为相互作用的基因和途径系统,而不是单个蛋白质或基因的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验