Cologne University of Applied Sciences, 50679 Cologne, Germany.
J Chem Phys. 2011 Mar 21;134(11):114515. doi: 10.1063/1.3559678.
The thermodynamic properties of pressure, energy, isothermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, Joule-Thomson coefficient, and speed of sound are considered in a classical molecular dynamics ensemble. These properties were obtained using the treatment of Lustig [J. Chem. Phys. 100, 3048 (1994)] and Meier and Kabelac [J. Chem. Phys. 124, 064104 (2006)], whereby thermodynamic state variables are expressible in terms of phase-space functions determined directly from molecular dynamics simulations. The complete thermodynamic information about an equilibrium system can be obtained from this general formalism. We apply this method to the gaussian core model fluid because the complex phase behavior of this simple model provides a severe test for this treatment. Waterlike and other anomalies are observed for some of the thermodynamic properties of the gaussian core model fluid.
在经典分子动力学系综中考虑了压力、能量、等温压力系数、热膨胀系数、等温和绝热压缩率、等压和等容热容、焦耳-汤姆逊系数以及声速的热力学性质。这些性质是通过 Lustig 的处理方法[J. Chem. Phys. 100, 3048 (1994)]和 Meier 和 Kabelac 的处理方法[J. Chem. Phys. 124, 064104 (2006)]获得的,其中热力学状态变量可以表示为直接从分子动力学模拟确定的相空间函数。从这个一般形式可以得到平衡系统的完整热力学信息。我们将这种方法应用于高斯核模型流体,因为这个简单模型的复杂相行为对这种处理方法是一个严峻的考验。对于高斯核模型流体的一些热力学性质,观察到了类水和其他异常现象。