Centre for Computational Innovations, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia.
Phys Rev E. 2019 Jul;100(1-1):012112. doi: 10.1103/PhysRevE.100.012112.
The structural, thermodynamic, and vapor-liquid equilibria properties of the double-Gaussian core model (DGM) potential are studied via molecular simulation. Results are presented for the pressure (p), potential energy (U), isochoric and isobaric heat capacities (C_{V,p}), isothermal compressibility (β_{T}), isochoric thermal pressure coefficient (γ_{V}), thermal expansion coefficient (α_{p}), speed of sound (ω_{0}), and the Joule-Thomson coefficient (μ_{JT}), which are compared with simulations for the Gaussian core model (GCM) potential. A feature of the simulations is that both the GCM and DGM potentials reproduce many of the anomalous properties of water, such as a maximum density, γ_{V}<0, maximum values for both α_{p} and β_{T}, and minimum values in both C_{p} and ω_{0}. The presence of attractive interaction enhances the anomalies and also yields some additional features such as a more structured vapor phase and Joule-Thomson inversion.
通过分子模拟研究了双高斯核模型(DGM)势能的结构、热力学和汽液平衡性质。给出了压力(p)、位能(U)、等容热容(C_{V,p})、等压热容(C_{p})、等温压缩率(β_{T})、等容热压力系数(γ_{V})、热膨胀系数(α_{p})、声速(ω_{0})和焦耳-汤姆逊系数(μ_{JT})的结果,与高斯核模型(GCM)势能的模拟结果进行了比较。模拟的一个特点是,GCM 和 DGM 势能都再现了水的许多异常性质,例如最大密度、γ_{V}<0、α_{p}和β_{T}的最大值,以及 C_{p}和ω_{0}的最小值。吸引力的存在增强了异常现象,也产生了一些额外的特征,如更具结构的气相和焦耳-汤姆逊反转。