Suppr超能文献

深海贝类的物种-能量关系。

Species-energy relationships in deep-sea molluscs.

机构信息

Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.

出版信息

Biol Lett. 2011 Oct 23;7(5):718-22. doi: 10.1098/rsbl.2010.1174. Epub 2011 Mar 23.

Abstract

Consensus is growing among ecologists that energy and the factors influencing its utilization can play overarching roles in regulating large-scale patterns of biodiversity. The deep sea--the world's largest ecosystem--has simplified energetic inputs and thus provides an excellent opportunity to study how these processes structure spatial diversity patterns. Two factors influencing energy availability and use are chemical (productive) and thermal energy, here represented as seafloor particulate organic carbon (POC) flux and temperature. We related regional patterns of benthic molluscan diversity in the North Atlantic to these factors, to conduct an explicit test of species-energy relationships in the modern day fauna of the deep ocean. Spatial regression analyses in a model-averaging framework indicated that POC flux had a substantially higher relative importance than temperature for both gastropods and protobranch bivalves, although high correlations between variables prevented definitive interpretation. This contrasts with recent research on temporal variation in fossil diversity from deep-sea cores, where temperature is generally a more significant predictor. These differences may reflect the scales of time and space at which productivity and temperature operate, or differences in body size; but both lines of evidence implicate processes influencing energy utilization as major determinants of deep-sea species diversity.

摘要

越来越多的生态学家认为,能量及其利用的因素可以在调节生物多样性的大尺度模式方面发挥主导作用。深海——世界上最大的生态系统——其能量输入简化,因此为研究这些过程如何构建空间多样性模式提供了极好的机会。有两个因素影响着能量的可利用性和利用,即化学(生产力)和热能,这里分别用海底颗粒有机碳(POC)通量和温度来表示。我们将北大西洋底栖软体动物多样性的区域模式与这些因素联系起来,对现代深海动物群中的物种-能量关系进行了明确的测试。在模型平均框架中的空间回归分析表明,对于腹足类和翼足类双壳类动物,POC 通量的相对重要性明显高于温度,尽管变量之间存在高度相关性,使得解释变得复杂。这与深海核心化石多样性的时间变化的最新研究形成了对比,在这些研究中,温度通常是一个更重要的预测因子。这些差异可能反映了生产力和温度作用的时间和空间尺度,或者是体型差异;但这两种证据都表明,影响能量利用的过程是深海物种多样性的主要决定因素。

相似文献

1
Species-energy relationships in deep-sea molluscs.
Biol Lett. 2011 Oct 23;7(5):718-22. doi: 10.1098/rsbl.2010.1174. Epub 2011 Mar 23.
2
Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds.
Zootaxa. 2020 Nov 16;4878(3):zootaxa.4878.3.2. doi: 10.11646/zootaxa.4878.3.2.
3
Causal analysis of the temperature impact on deep-sea biodiversity.
Biol Lett. 2021 Jul;17(7):20200666. doi: 10.1098/rsbl.2020.0666. Epub 2021 Jul 21.
4
The trans-Atlantic history of diversity and body size in ecological guilds.
Ecology. 2008 Nov;89(11 Suppl):S39-52. doi: 10.1890/07-0663.1.
6
7
A source-sink hypothesis for abyssal biodiversity.
Am Nat. 2005 Feb;165(2):163-78. doi: 10.1086/427226. Epub 2004 Dec 22.
9
Deep-sea diversity patterns are shaped by energy availability.
Nature. 2016 May 19;533(7603):393-6. doi: 10.1038/nature17937. Epub 2016 May 11.
10

引用本文的文献

1
Functional space expansion driven by transitions between energetically advantageous traits in the deep sea.
Proc Biol Sci. 2022 Nov 30;289(1987):20221302. doi: 10.1098/rspb.2022.1302. Epub 2022 Nov 16.
2
Inferring functional traits in a deep-sea wood-boring bivalve using dynamic energy budget theory.
Sci Rep. 2021 Nov 22;11(1):22720. doi: 10.1038/s41598-021-02243-w.
5
Causal analysis of the temperature impact on deep-sea biodiversity.
Biol Lett. 2021 Jul;17(7):20200666. doi: 10.1098/rsbl.2020.0666. Epub 2021 Jul 21.
7
Persistent and substantial impacts of the Deepwater Horizon oil spill on deep-sea megafauna.
R Soc Open Sci. 2019 Aug 28;6(8):191164. doi: 10.1098/rsos.191164. eCollection 2019 Aug.
8
Deep-sea diversity patterns are shaped by energy availability.
Nature. 2016 May 19;533(7603):393-6. doi: 10.1038/nature17937. Epub 2016 May 11.
9
Biodiversity-ecosystem functioning relationships in long-term time series and palaeoecological records: deep sea as a test bed.
Philos Trans R Soc Lond B Biol Sci. 2016 May 19;371(1694). doi: 10.1098/rstb.2015.0282.
10
Can the source-sink hypothesis explain macrofaunal abundance patterns in the abyss? A modelling test.
Proc Biol Sci. 2015 Jun 7;282(1808):20150193. doi: 10.1098/rspb.2015.0193.

本文引用的文献

1
The Nonconcept of Species Diversity: A Critique and Alternative Parameters.
Ecology. 1971 Jul;52(4):577-586. doi: 10.2307/1934145.
2
Global patterns and predictors of marine biodiversity across taxa.
Nature. 2010 Aug 26;466(7310):1098-101. doi: 10.1038/nature09329. Epub 2010 Jul 28.
4
Temporal latitudinal-gradient dynamics and tropical instability of deep-sea species diversity.
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21717-20. doi: 10.1073/pnas.0910935106. Epub 2009 Dec 14.
6
Abyssal food limitation, ecosystem structure and climate change.
Trends Ecol Evol. 2008 Sep;23(9):518-28. doi: 10.1016/j.tree.2008.05.002. Epub 2008 Jun 26.
7
Climate, energy and diversity.
Proc Biol Sci. 2006 Sep 22;273(1599):2257-66. doi: 10.1098/rspb.2006.3545.
8
Species-energy relationships at the macroecological scale: a review of the mechanisms.
Biol Rev Camb Philos Soc. 2005 Feb;80(1):1-25. doi: 10.1017/s1464793104006517.
9
Global biodiversity, biochemical kinetics, and the energetic-equivalence rule.
Science. 2002 Aug 30;297(5586):1545-8. doi: 10.1126/science.1072380.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验