Suppr超能文献

温度对深海生物多样性影响的因果分析。

Causal analysis of the temperature impact on deep-sea biodiversity.

机构信息

Graduate School of Information Science, University of Hyogo, 7-1-28 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.

Division of Ecology and Biodiversity, School of Biological Sciences, Swire Institute of Marine Science, and State Key Laboratory of Marine Pollution, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.

出版信息

Biol Lett. 2021 Jul;17(7):20200666. doi: 10.1098/rsbl.2020.0666. Epub 2021 Jul 21.

Abstract

The deep sea comprises more than 90% of the ocean; therefore, understanding the controlling factors of biodiversity in the deep sea is of great importance for predicting future changes in the functioning of the ocean system. Consensus has recently been increasing on two plausible factors that have often been discussed as the drivers of deep-sea species richness in the contexts of the species-energy and physiological tolerance hypotheses: (i) seafloor particulate organic carbon (POC) derived from primary production in the euphotic zone and (ii) temperature. Nonetheless, factors that drive deep-sea biodiversity are still actively debated potentially owing to a mirage of correlations (sign and magnitude are generally time dependent), which are often found in nonlinear, complex ecological systems, making the characterization of causalities difficult. Here, we tested the causal influences of POC flux and temperature on species richness using long-term palaeoecological datasets derived from sediment core samples and convergent cross mapping, a numerical method for characterizing causal relationships in complex systems. The results showed that temperature, but not POC flux, influenced species richness over 10-10-year time scales. The temperature-richness relationship in the deep sea suggests that human-induced future climate change may, under some conditions, affect deep-sea ecosystems through deep-water circulation changes rather than surface productivity changes.

摘要

深海覆盖了海洋的 90%以上;因此,了解深海生物多样性的控制因素对于预测海洋系统未来的功能变化非常重要。最近越来越多的人认同两个合理的因素,这两个因素经常被讨论为物种-能量和生理耐受假说中深海物种丰富度的驱动因素:(i)来自透光带初级生产的海底颗粒有机碳(POC);以及(ii)温度。然而,由于非线性、复杂的生态系统中经常存在关联的海市蜃楼(通常随时间而变化),驱动深海生物多样性的因素仍在激烈争论中,这使得因果关系的描述变得困难。在这里,我们使用来自沉积物岩芯样本的长期古生态学数据集和收敛交叉映射(一种用于描述复杂系统中因果关系的数值方法)来测试 POC 通量和温度对物种丰富度的因果影响。结果表明,温度而不是 POC 通量在 10-10 年的时间尺度上影响物种丰富度。深海中的温度-丰富度关系表明,在某些条件下,人类引起的未来气候变化可能通过深水环流变化而不是表层生产力变化来影响深海生态系统。

相似文献

1
Causal analysis of the temperature impact on deep-sea biodiversity.
Biol Lett. 2021 Jul;17(7):20200666. doi: 10.1098/rsbl.2020.0666. Epub 2021 Jul 21.
2
Deep-sea diversity patterns are shaped by energy availability.
Nature. 2016 May 19;533(7603):393-6. doi: 10.1038/nature17937. Epub 2016 May 11.
3
Species-energy relationships in deep-sea molluscs.
Biol Lett. 2011 Oct 23;7(5):718-22. doi: 10.1098/rsbl.2010.1174. Epub 2011 Mar 23.
4
Climate change considerations are fundamental to management of deep-sea resource extraction.
Glob Chang Biol. 2020 Sep;26(9):4664-4678. doi: 10.1111/gcb.15223. Epub 2020 Jul 6.
6
Temperature impacts on deep-sea biodiversity.
Biol Rev Camb Philos Soc. 2016 May;91(2):275-87. doi: 10.1111/brv.12169. Epub 2014 Dec 18.
7
Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds.
Zootaxa. 2020 Nov 16;4878(3):zootaxa.4878.3.2. doi: 10.11646/zootaxa.4878.3.2.
8
Climate, carbon cycling, and deep-ocean ecosystems.
Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19211-8. doi: 10.1073/pnas.0908322106. Epub 2009 Nov 9.
10
Big in the benthos: Future change of seafloor community biomass in a global, body size-resolved model.
Glob Chang Biol. 2017 Sep;23(9):3554-3566. doi: 10.1111/gcb.13680. Epub 2017 Apr 25.

引用本文的文献

3
A framework for identifying factors controlling cyanobacterium blooms by coupled CCM-ECCM Bayesian networks.
Ecol Evol. 2024 Jun 25;14(6):e11475. doi: 10.1002/ece3.11475. eCollection 2024 Jun.
4
Challenges and directions in analytical paleobiology.
Paleobiology. 2023 Aug;49(3):377-393. doi: 10.1017/pab.2023.3. Epub 2023 Feb 27.
5
Detecting and attributing the causes of biodiversity change: needs, gaps and solutions.
Philos Trans R Soc Lond B Biol Sci. 2023 Jul 17;378(1881):20220181. doi: 10.1098/rstb.2022.0181. Epub 2023 May 29.
7
Temperature and nutrients drive eco-phenotypic dynamics in a microbial food web.
Proc Biol Sci. 2023 Feb 8;290(1992):20222263. doi: 10.1098/rspb.2022.2263. Epub 2023 Feb 1.

本文引用的文献

2
Fluctuating interaction network and time-varying stability of a natural fish community.
Nature. 2018 Feb 15;554(7692):360-363. doi: 10.1038/nature25504. Epub 2018 Feb 7.
3
Global environmental drivers of influenza.
Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):13081-13086. doi: 10.1073/pnas.1607747113. Epub 2016 Oct 31.
4
Deep-sea diversity patterns are shaped by energy availability.
Nature. 2016 May 19;533(7603):393-6. doi: 10.1038/nature17937. Epub 2016 May 11.
5
Biodiversity-ecosystem functioning relationships in long-term time series and palaeoecological records: deep sea as a test bed.
Philos Trans R Soc Lond B Biol Sci. 2016 May 19;371(1694). doi: 10.1098/rstb.2015.0282.
6
7
Combining marine macroecology and palaeoecology in understanding biodiversity: microfossils as a model.
Biol Rev Camb Philos Soc. 2017 Feb;92(1):199-215. doi: 10.1111/brv.12223. Epub 2015 Sep 30.
9
DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity.
Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):2076-81. doi: 10.1073/pnas.1424997112. Epub 2015 Feb 2.
10
Temperature impacts on deep-sea biodiversity.
Biol Rev Camb Philos Soc. 2016 May;91(2):275-87. doi: 10.1111/brv.12169. Epub 2014 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验