Suppr超能文献

随机森林旋转算法在基因组和蛋白质组分类问题中的应用。

Rotation of random forests for genomic and proteomic classification problems.

机构信息

Faculty of Health Sciences, University of Maribor, Zitna ulica 15, 2000, Maribor, Slovenia.

出版信息

Adv Exp Med Biol. 2011;696:211-21. doi: 10.1007/978-1-4419-7046-6_21.

Abstract

Random Forests have been recently widely used for different kinds of classification problems. One of them is classification of gene expression samples that is known as a problem with extremely high dimensionality, and therefore demands suited classification techniques. Due to its strong robustness with respect to large feature sets, Random Forests show significant increase of accuracy in comparison to other ensemble-based classifiers that were widely used before its introduction. In this chapter, we present another ensemble of decision trees called Rotation Forest and evaluate its classification performance on different microarray datasets. Rotation Forest can also be applied to different already existing ensembles of classifiers like Random Forest to improve their accuracy and robustness. This study presents evaluation of Rotation Forest classification technique based on decision trees as base classifiers and was evaluated on 14 different datasets with genomic and proteomic data. It is evident that Rotation Forest as well as the proposed rotation of Random Forests outperform most widely used ensembles of classifiers including Random Forests on majority of datasets.

摘要

随机森林最近被广泛应用于不同类型的分类问题。其中之一是基因表达样本的分类,这是一个具有极高维度的问题,因此需要合适的分类技术。由于随机森林对于大型特征集具有很强的稳健性,与其他在其引入之前广泛使用的基于集成的分类器相比,它的准确性有了显著提高。在本章中,我们提出了另一种称为旋转森林的决策树集成,并在不同的微阵列数据集上评估了它的分类性能。旋转森林也可以应用于不同的已有分类器集成,如随机森林,以提高它们的准确性和稳健性。本研究评估了基于决策树作为基分类器的旋转森林分类技术,并在 14 个具有基因组和蛋白质组数据的不同数据集上进行了评估。显然,旋转森林以及所提出的随机森林的旋转在大多数数据集上都优于最广泛使用的分类器集成,包括随机森林。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验