Instrumentation Engineering, Andhra University, Visakhapatnam, 530003, India.
Adv Exp Med Biol. 2011;696:505-13. doi: 10.1007/978-1-4419-7046-6_51.
In this chapter, various block-based adaptive filter structures are presented, which estimate the deterministic components of the electrocardiogram (ECG) signal and remove the noise. The familiar Block LMS algorithm (BLMS) and its fast implementation, Fast Block LMS (FBLMS) algorithm, is proposed for removing artifacts preserving the low frequency components and tiny features of the ECG. The proposed implementation is suitable for applications requiring large signal-to-noise ratios with fast convergence rate. Finally, we have applied these algorithms on real ECG signals obtained from the MIT-BIH database and compared its performance with the conventional LMS algorithm. The results show that the performance of the block-based algorithms is superior than the LMS algorithm.
在本章中,提出了各种基于块的自适应滤波器结构,用于估计心电图 (ECG) 信号的确定性分量并去除噪声。提出了用于去除伪影同时保留 ECG 的低频分量和微小特征的熟悉的块最小均方 (BLMS) 算法及其快速实现,快速块最小均方 (FBLMS) 算法。所提出的实现适用于需要高信噪比和快速收敛速率的应用。最后,我们将这些算法应用于从麻省理工学院-贝斯以色列医院 (MIT-BIH) 数据库获得的真实 ECG 信号,并将其性能与传统的最小均方 (LMS) 算法进行了比较。结果表明,基于块的算法的性能优于 LMS 算法。