Suppr超能文献

使用块自适应滤波技术消除 ECG 信号中的伪影。

Cancellation of artifacts in ECG signals using block adaptive filtering techniques.

机构信息

Instrumentation Engineering, Andhra University, Visakhapatnam, 530003, India.

出版信息

Adv Exp Med Biol. 2011;696:505-13. doi: 10.1007/978-1-4419-7046-6_51.

Abstract

In this chapter, various block-based adaptive filter structures are presented, which estimate the deterministic components of the electrocardiogram (ECG) signal and remove the noise. The familiar Block LMS algorithm (BLMS) and its fast implementation, Fast Block LMS (FBLMS) algorithm, is proposed for removing artifacts preserving the low frequency components and tiny features of the ECG. The proposed implementation is suitable for applications requiring large signal-to-noise ratios with fast convergence rate. Finally, we have applied these algorithms on real ECG signals obtained from the MIT-BIH database and compared its performance with the conventional LMS algorithm. The results show that the performance of the block-based algorithms is superior than the LMS algorithm.

摘要

在本章中,提出了各种基于块的自适应滤波器结构,用于估计心电图 (ECG) 信号的确定性分量并去除噪声。提出了用于去除伪影同时保留 ECG 的低频分量和微小特征的熟悉的块最小均方 (BLMS) 算法及其快速实现,快速块最小均方 (FBLMS) 算法。所提出的实现适用于需要高信噪比和快速收敛速率的应用。最后,我们将这些算法应用于从麻省理工学院-贝斯以色列医院 (MIT-BIH) 数据库获得的真实 ECG 信号,并将其性能与传统的最小均方 (LMS) 算法进行了比较。结果表明,基于块的算法的性能优于 LMS 算法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验