Guillou André, Sellal Jean-Marc, Ménétré Sarah, Petitmangin Grégory, Felblinger Jacques, Bonnemains Laurent
Schiller SA, 4 rue Pasteur, 67160, Wissembourg, France.
INSERM, U947, rue du Morvan, 54511, Vandoeuvre-les-Nancy, France.
MAGMA. 2017 Dec;30(6):567-577. doi: 10.1007/s10334-017-0638-8. Epub 2017 Jun 19.
We describe a new real-time filter to reduce artefacts on electrocardiogram (ECG) due to magnetic field gradients during MRI. The proposed filter is a least mean square (LMS) filter able to continuously adapt its step size according to the gradient signal of the ongoing MRI acquisition.
We implemented this filter and compared it, within two databases (at 1.5 and 3 T) with over 6000 QRS complexes, to five real-time filtering strategies (no filter, low pass filter, standard LMS, and two other filters optimized within the databases: optimized LMS, and optimized Kalman filter).
The energy of the remaining noise was significantly reduced (26 vs. 68%, p < 0.001) with the new filter vs. standard LMS. The detection error of our ventricular complex (QRS) detector was: 11% with our method vs. 25% with raw ECG, 35% with low pass filter, 17% with standard LMS, 12% with optimized Kalman filter, and 11% with optimized LMS filter.
The adaptive step size LMS improves ECG denoising during MRI. QRS detection has the same F1 score with this filter than with filters optimized within the database.
我们描述了一种新的实时滤波器,用于减少磁共振成像(MRI)期间由于磁场梯度导致的心电图(ECG)伪影。所提出的滤波器是一种最小均方(LMS)滤波器,能够根据正在进行的MRI采集的梯度信号连续调整其步长。
我们实现了该滤波器,并在两个包含超过6000个QRS复合波的数据库(1.5T和3T)中,将其与五种实时滤波策略(无滤波器、低通滤波器、标准LMS以及在数据库中优化的另外两种滤波器:优化LMS和优化卡尔曼滤波器)进行比较。
与标准LMS相比,新滤波器使剩余噪声能量显著降低(26%对68%,p<0.001)。我们的心室复合波(QRS)检测器的检测误差为:我们的方法为11%,原始ECG为25%,低通滤波器为35%,标准LMS为17%,优化卡尔曼滤波器为12%,优化LMS滤波器为11%。
自适应步长LMS改善了MRI期间的ECG去噪。使用此滤波器的QRS检测与在数据库中优化的滤波器具有相同的F1分数。