Wong Sandy M S, Gawronski Jeffrey D, Lapointe David, Akerley Brian J
Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA, USA.
Methods Mol Biol. 2011;733:209-22. doi: 10.1007/978-1-61779-089-8_15.
Whole-genome techniques toward identification of microbial genes required for their survival and growth during infection have been useful for studies of bacterial pathogenesis. The advent of massively parallel sequencing platforms has created the opportunity to markedly accelerate such genome-scale analyses and achieve unprecedented sensitivity, resolution, and quantification. This chapter provides an overview of a genome-scale methodology that combines high-density transposon mutagenesis with a mariner transposon and deep sequencing to identify genes that are needed for survival in experimental models of pathogenesis. Application of this approach to a model pathogen, Haemophilus influenzae, has provided a comprehensive analysis of the relative role of each gene of this human respiratory pathogen in a murine pulmonary model. The method is readily adaptable to nearly any organism amenable to transposon mutagenesis.
用于鉴定微生物在感染过程中生存和生长所需基因的全基因组技术,对细菌致病机制的研究很有帮助。大规模平行测序平台的出现,为显著加速此类基因组规模分析并实现前所未有的灵敏度、分辨率和定量分析创造了机会。本章概述了一种基因组规模的方法,该方法将高密度转座子诱变与水手转座子和深度测序相结合,以鉴定在致病机制实验模型中生存所需的基因。将这种方法应用于模式病原体流感嗜血杆菌,对这种人类呼吸道病原体的每个基因在小鼠肺部模型中的相对作用进行了全面分析。该方法很容易适用于几乎任何适合转座子诱变的生物体。