Suppr超能文献

逆转录病毒粒子与基因组

Retroviral Virions and Genomes

作者信息

Vogt VM

Abstract

For all viruses, the structure of the viral particle (virion) in part reflects the fundamental requirements imposed by the need for propagation. These requirements include incorporation of the genome into particles that are stable outside of cells, recognition of and entry into appropriate host cells, replication of the genome, and the translation of viral messenger RNA to yield new viral proteins. Retroviruses are enveloped RNA viruses, a complex group with several common features. Enveloped RNA viruses contain proteins that carry out five basic functions: (1) condensation of the genome into an RNA-protein complex; (2) packaging of this complex in a protein shell; (3) enclosure of the shell in a lipid membrane, or envelope; (4) modification of the envelope by addition of surface proteins that recognize cellular receptors; and (5) for negative strand viruses and retroviruses, copying of the RNA in the newly infected cell. Many enveloped viruses in fact are more complicated, with two or more proteins sharing each function, and others are simpler, with one protein carrying out two or three functions. The simpler enveloped viruses provide useful paradigms to help understand aspects of retroviral structure. Until the successful crystallization and X-ray diffraction work on spherical viruses in the last decade, structural information was gained largely by fractionation of the components of purified viruses, by electron microscopy, and indirectly by genetic analysis. For the many viruses for which useful crystals have not been obtained, these techniques remain the cornerstone upon which inferences about structure are built. The first direct visualization of retroviruses, by thin-section and negative-stain electron microscopy, predated these first biochemical studies (Bernhard 1958). The first substantially pure preparations of retroviruses became available in the 1960s, for the avian sarcoma/leukosis viruses (ASLVs) and the murine leukemia viruses (MLVs), which were the most widely studied retroviruses until the advent of human immunodeficiency virus (HIV). The technique of SDS-polyacrylamide gel electrophoresis to separate denatured polypeptides, developed in the late 1960s, became a key tool to characterize the viral proteins. Discovery of viral reverse transcriptase (Baltimore 1970; Temin and Mizutani 1970) and its associated RNase H (Moelling et al. 1971) and elucidation of the mechanism by which the genome is copied (Chapter 4) provided a unifying simplicity to models for replication. Also unifying was the recognition that the internal structural proteins are derived from a precursor polypeptide (Vogt and Eisenman 1973) and that the reverse transcriptase itself, as well as the protease necessary for processing of the precursor, is translated as a precursor also containing the structural proteins (Chapter 7). The much later observation that the virus carries with it the enzyme-catalyzing integration of viral DNA into host chromosomes (Chapter 5) further solidified the view of retroviral structure and replication. Finally, the discoveries that retroviral transformation is genetically separable from replication and that retroviral oncogenes are derived directly from cellular oncogenes (Chapter 10) made it clear that the complexities of oncogenic transformation in many cases had little to do with the virus per se. One might say that this theme of simplicity survived until the discovery of retroviral accessory genes in human T-cell leukemia virus (HTLV) (Seiki et al. 1983), eventually extended to HIV and other viruses (Chapter 6). Even so, in terms of structural and genetic organization, retroviruses remain among the simpler members of the virus world, and they are likely to be among the more ancient as well (Chapter 8).

摘要

对于所有病毒而言,病毒粒子(毒粒)的结构部分反映了病毒传播所带来的基本需求。这些需求包括将基因组整合到细胞外稳定的粒子中、识别并进入合适的宿主细胞、基因组的复制以及病毒信使RNA的翻译以产生新的病毒蛋白。逆转录病毒是包膜RNA病毒,这是一类具有若干共同特征的复杂病毒。包膜RNA病毒含有执行五种基本功能的蛋白质:(1)将基因组浓缩成RNA-蛋白质复合物;(2)将该复合物包装在蛋白质外壳中;(3)将外壳包裹在脂质膜或包膜中;(4)通过添加识别细胞受体的表面蛋白来修饰包膜;(5)对于负链病毒和逆转录病毒,在新感染的细胞中复制RNA。实际上,许多包膜病毒更为复杂,有两种或更多种蛋白质共同执行每种功能,而其他一些则较为简单,一种蛋白质执行两三种功能。这些较为简单的包膜病毒为理解逆转录病毒结构的各个方面提供了有用的范例。直到过去十年对球形病毒成功进行结晶和X射线衍射研究之前,结构信息主要是通过纯化病毒成分的分级分离、电子显微镜观察以及间接的遗传分析获得的。对于许多尚未获得有用晶体的病毒来说,这些技术仍然是构建结构推断的基石。通过超薄切片和负染电子显微镜对逆转录病毒进行的首次直接观察,早于这些首次生化研究(伯恩哈德,1958年)。20世纪60年代,首次获得了相当纯的逆转录病毒制剂,用于禽肉瘤/白血病病毒(ASLVs)和鼠白血病病毒(MLVs),在人类免疫缺陷病毒(HIV)出现之前,它们是研究最广泛的逆转录病毒。20世纪60年代末开发的用于分离变性多肽的SDS-聚丙烯酰胺凝胶电泳技术,成为表征病毒蛋白的关键工具。病毒逆转录酶的发现(巴尔的摩,1970年;特明和水谷,1970年)及其相关的核糖核酸酶H(默林等人,1971年)以及对基因组复制机制的阐明(第4章),为复制模型提供了统一的简洁性。同样具有统一性的是认识到内部结构蛋白源自前体多肽(沃格特和艾森曼,1973年),并且逆转录酶本身以及加工前体所需的蛋白酶也是以前体形式翻译的,该前体也包含结构蛋白(第7章)。后来观察到病毒携带将病毒DNA催化整合到宿主染色体中的酶(第5章),这进一步巩固了对逆转录病毒结构和复制的认识。最后,逆转录病毒转化在遗传上与复制可分离以及逆转录病毒癌基因直接源自细胞癌基因的发现(第10章),明确表明在许多情况下致癌转化的复杂性与病毒本身关系不大。可以说,这种简单性的主题一直延续到人类T细胞白血病病毒(HTLV)中逆转录病毒辅助基因的发现(关木等人,1983年),最终扩展到HIV和其他病毒(第6章)。即便如此,就结构和遗传组织而言,逆转录病毒仍然是病毒世界中较为简单的成员之一,而且它们可能也是较为古老的成员之一(第8章)。

相似文献

3
HIV-1 replication.HIV-1复制
Somat Cell Mol Genet. 2001 Nov;26(1-6):13-33. doi: 10.1023/a:1021070512287.
7
Oncogenesis by retroviruses: old and new paradigms.逆转录病毒致癌作用:新旧范式
Rev Med Virol. 2008 Nov-Dec;18(6):387-405. doi: 10.1002/rmv.592.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验