Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA 94305, USA.
Science. 2011 Mar 25;331(6024):1579-83. doi: 10.1126/science.1198415.
The nature of the pseudogap phase of cuprate high-temperature superconductors is a major unsolved problem in condensed matter physics. We studied the commencement of the pseudogap state at temperature T* using three different techniques (angle-resolved photoemission spectroscopy, polar Kerr effect, and time-resolved reflectivity) on the same optimally doped Bi2201 crystals. We observed the coincident, abrupt onset at T* of a particle-hole asymmetric antinodal gap in the electronic spectrum, a Kerr rotation in the reflected light polarization, and a change in the ultrafast relaxational dynamics, consistent with a phase transition. Upon further cooling, spectroscopic signatures of superconductivity begin to grow close to the superconducting transition temperature (T(c)), entangled in an energy-momentum-dependent manner with the preexisting pseudogap features, ushering in a ground state with coexisting orders.
高温超导铜酸盐赝能隙相的本质是凝聚态物理中的一个重大未解决问题。我们使用三种不同的技术(角分辨光发射谱、偏振克尔效应和时间分辨反射率),在相同的最佳掺杂 Bi2201 晶体上研究了温度 T处赝能隙态的起始。我们观察到在 T处电子能谱中出现了粒子-空穴非对称的节点隙、反射光偏振的克尔旋转以及超快弛豫动力学的变化,这些都与相变一致。进一步冷却时,超导光谱特征开始在超导转变温度(T(c))附近增长,与预先存在的赝能隙特征以能量-动量相关的方式纠缠在一起,引入了具有共存序的基态。