Suppr超能文献

基于序贯 SDP 松弛的降维极大极小距离分析。

Max-min distance analysis by using sequential SDP relaxation for dimension reduction.

机构信息

Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology, Sydney, Australia.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2011 May;33(5):1037-50. doi: 10.1109/TPAMI.2010.189.

Abstract

We propose a new criterion for discriminative dimension reduction, max-min distance analysis (MMDA). Given a data set with C classes, represented by homoscedastic Gaussians, MMDA maximizes the minimum pairwise distance of these C classes in the selected low-dimensional subspace. Thus, unlike Fisher's linear discriminant analysis (FLDA) and other popular discriminative dimension reduction criteria, MMDA duly considers the separation of all class pairs. To deal with general case of data distribution, we also extend MMDA to kernel MMDA (KMMDA). Dimension reduction via MMDA/KMMDA leads to a nonsmooth max-min optimization problem with orthonormal constraints. We develop a sequential convex relaxation algorithm to solve it approximately. To evaluate the effectiveness of the proposed criterion and the corresponding algorithm, we conduct classification and data visualization experiments on both synthetic data and real data sets. Experimental results demonstrate the effectiveness of MMDA/KMMDA associated with the proposed optimization algorithm.

摘要

我们提出了一种新的判别降维准则,即极大极小距离分析(MMDA)。给定一个具有 C 个类别的数据集,由同方差高斯分布表示,MMDA 最大化所选低维子空间中这些 C 个类别的最小成对距离。因此,与 Fisher 的线性判别分析(FLDA)和其他流行的判别降维准则不同,MMDA 适当考虑了所有类对的分离。为了处理数据分布的一般情况,我们还将 MMDA 扩展到核 MMDA(KMMDA)。通过 MMDA/KMMDA 进行降维会导致具有正交约束的非平滑极大极小优化问题。我们开发了一种顺序凸松弛算法来近似求解它。为了评估所提出的准则和相应算法的有效性,我们在合成数据集和真实数据集上进行了分类和数据可视化实验。实验结果表明,所提出的优化算法与 MMDA/KMMDA 相关联具有有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验