Suppr超能文献

基于絮体的序批式部分亚硝化和好氧反硝化的全规模应用及具有差异的 N2O 排放。

Floc-based sequential partial nitritation and anammox at full scale with contrasting N2O emissions.

机构信息

Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Gent, Belgium.

出版信息

Water Res. 2011 Apr;45(9):2811-21. doi: 10.1016/j.watres.2011.02.028. Epub 2011 Mar 2.

Abstract

New Activated Sludge (NAS(®)) is a hybrid, floc-based nitrogen removal process without carbon addition, based on the control of sludge retention times (SRT) and dissolved oxygen (DO) levels. The aim of this study was to examine the performance of a retrofitted four-stage NAS(®) plant, including on-line measurements of greenhouse gas emissions (N(2)O and CH(4)). The plant treated anaerobically digested industrial wastewater, containing 264 mg N L(-1), 1154 mg chemical oxygen demand (COD) L(-1) and an inorganic carbon alkalinity of 34 meq L(-1). The batch-fed partial nitritation step received an overall nitrogen loading rate of 0.18-0.22 kg N m(-3) d(-1), thereby oxidized nitrogen to nitrite (45-47%) and some nitrate (13-15%), but also to N(2)O (5.1-6.6%). This was achieved at a SRT of 1.7 d and DO around 1.0 mg O(2) L(-1). Subsequently, anammox, denitrification and nitrification compartments were followed by a final settler, at an overall SRT of 46 d. None of the latter three reactors emitted N(2)O. In the anammox step, 0.26 kg N m(-3) d(-1) was removed, with an estimated contribution of 71% by the genus Kuenenia, which constituted 3.1% of the biomass. Overall, a nitrogen removal efficiency of 95% was obtained, yielding a dischargeable effluent. Retrofitting floc-based nitrification/denitrification with carbon addition to NAS(®) allowed to save 40% of the operational wastewater treatment costs. Yet, a decrease of the N(2)O emissions by about 50% is necessary in order to obtain a CO(2) neutral footprint. The impact of emitted CH(4) was 20 times lower.

摘要

新型活性污泥(NAS(®))是一种基于控制污泥停留时间(SRT)和溶解氧(DO)水平的无碳添加、基于絮体的混合氮去除工艺。本研究的目的是检验经改造的四阶段 NAS(®)工厂的性能,包括温室气体排放(N(2)O 和 CH(4))的在线测量。该工厂处理含有 264 mg N L(-1)、1154 mg 化学需氧量(COD)L(-1)和 34 meq L(-1)无机碳碱度的厌氧消化工业废水。分批进料的部分硝化步骤的总氮负荷为 0.18-0.22 kg N m(-3) d(-1),从而将氮氧化为亚硝酸盐(45-47%)和一些硝酸盐(13-15%),但也生成了 N(2)O(5.1-6.6%)。这是在 SRT 为 1.7 d 和 DO 约 1.0 mg O(2) L(-1)的条件下实现的。随后,是厌氧氨氧化、反硝化和硝化池,最后是一个最终沉淀池,总的 SRT 为 46 d。后三个反应器均未排放 N(2)O。在厌氧氨氧化步骤中,去除了 0.26 kg N m(-3) d(-1),估计由 Kuenenia 属贡献了 71%,该属构成了生物量的 3.1%。总的来说,获得了 95%的氮去除效率,得到了可排放的出水。将添加碳的基于絮体的硝化/反硝化 retrofit 到 NAS(®)中,可以节省 40%的运营废水处理成本。然而,为了获得 CO(2)中性足迹,需要将 N(2)O 排放量减少约 50%。排放的 CH(4)的影响低 20 倍。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验