Suppr超能文献

氮代谢物对人源真菌病原体新生隐球菌的代谢和毒力的抑制作用。

Nitrogen metabolite repression of metabolism and virulence in the human fungal pathogen Cryptococcus neoformans.

机构信息

Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia.

出版信息

Genetics. 2011 Jun;188(2):309-23. doi: 10.1534/genetics.111.128538. Epub 2011 Mar 24.

Abstract

Proper regulation of metabolism is essential to maximizing fitness of organisms in their chosen environmental niche. Nitrogen metabolite repression is an example of a regulatory mechanism in fungi that enables preferential utilization of easily assimilated nitrogen sources, such as ammonium, to conserve resources. Here we provide genetic, transcriptional, and phenotypic evidence of nitrogen metabolite repression in the human pathogen Cryptococcus neoformans. In addition to loss of transcriptional activation of catabolic enzyme-encoding genes of the uric acid and proline assimilation pathways in the presence of ammonium, nitrogen metabolite repression also regulates the production of the virulence determinants capsule and melanin. Since GATA transcription factors are known to play a key role in nitrogen metabolite repression, bioinformatic analyses of the C. neoformans genome were undertaken and seven predicted GATA-type genes were identified. A screen of these deletion mutants revealed GAT1, encoding the only global transcription factor essential for utilization of a wide range of nitrogen sources, including uric acid, urea, and creatinine-three predominant nitrogen constituents found in the C. neoformans ecological niche. In addition to its evolutionarily conserved role in mediating nitrogen metabolite repression and controlling the expression of catabolic enzyme and permease-encoding genes, Gat1 also negatively regulates virulence traits, including infectious basidiospore production, melanin formation, and growth at high body temperature (39°-40°). Conversely, Gat1 positively regulates capsule production. A murine inhalation model of cryptococcosis revealed that the gat1Δ mutant is slightly more virulent than wild type, indicating that Gat1 plays a complex regulatory role during infection.

摘要

适当的代谢调控对于生物体在其选择的生态位中最大限度地发挥适应性至关重要。氮代谢物抑制是真菌中一种调节机制的示例,它使生物体能够优先利用易于同化的氮源,如铵盐,以节约资源。在这里,我们提供了人类病原体新型隐球菌中氮代谢物抑制的遗传、转录和表型证据。除了在铵存在的情况下,尿酸和脯氨酸同化途径的分解代谢酶编码基因的转录激活丧失外,氮代谢物抑制还调节了毒力决定因素荚膜和黑色素的产生。由于 GATA 转录因子已知在氮代谢物抑制中发挥关键作用,因此对新型隐球菌基因组进行了生物信息学分析,鉴定了七个预测的 GATA 型基因。对这些缺失突变体的筛选揭示了 GAT1,它编码唯一的全局转录因子,对于利用广泛的氮源(包括尿酸、尿素和肌酐——新型隐球菌生态位中发现的三种主要氮成分)是必需的。除了在介导氮代谢物抑制和控制分解代谢酶和渗透酶编码基因的表达方面的进化保守作用外,Gat1 还负调控毒力特征,包括感染性担子孢子的产生、黑色素的形成以及在高温(39°-40°)下的生长。相反,Gat1 正调控荚膜的产生。新型隐球菌 cryptococcosis 的小鼠吸入模型表明,gat1Δ 突变体比野生型略具毒力,表明 Gat1 在感染过程中发挥了复杂的调节作用。

相似文献

1
Nitrogen metabolite repression of metabolism and virulence in the human fungal pathogen Cryptococcus neoformans.
Genetics. 2011 Jun;188(2):309-23. doi: 10.1534/genetics.111.128538. Epub 2011 Mar 24.
3
The GATA-type transcriptional activator Gat1 regulates nitrogen uptake and metabolism in the human pathogen Cryptococcus neoformans.
Fungal Genet Biol. 2011 Feb;48(2):192-9. doi: 10.1016/j.fgb.2010.07.011. Epub 2010 Jul 29.
5
Characterization of the complete uric acid degradation pathway in the fungal pathogen Cryptococcus neoformans.
PLoS One. 2013 May 7;8(5):e64292. doi: 10.1371/journal.pone.0064292. Print 2013.
6
Amt2 permease is required to induce ammonium-responsive invasive growth and mating in Cryptococcus neoformans.
Eukaryot Cell. 2008 Feb;7(2):237-46. doi: 10.1128/EC.00079-07. Epub 2007 Nov 30.
8
GLN3 encodes a global regulator of nitrogen metabolism and virulence of C. albicans.
Fungal Genet Biol. 2008 Apr;45(4):514-26. doi: 10.1016/j.fgb.2007.08.006. Epub 2007 Sep 7.
9
Factors Influencing the Nitrogen-Source Dependent Flucytosine Resistance in Cryptococcus Species.
mBio. 2023 Feb 28;14(1):e0345122. doi: 10.1128/mbio.03451-22. Epub 2023 Jan 19.
10
Amino Acid Permeases and Virulence in Cryptococcus neoformans.
PLoS One. 2016 Oct 3;11(10):e0163919. doi: 10.1371/journal.pone.0163919. eCollection 2016.

引用本文的文献

1
Unveiling new features of the human pathogen through the reconstruction and exploitation of a dedicated genome-scale metabolic model.
Comput Struct Biotechnol J. 2025 May 23;27:2336-2346. doi: 10.1016/j.csbj.2025.05.034. eCollection 2025.
2
Reconstruction and exploitation of a dedicated Genome-Scale Metabolic Model of the human pathogen .
bioRxiv. 2025 Apr 8:2025.04.02.646762. doi: 10.1101/2025.04.02.646762.
3
Cryptococcal nutrient acquisition and pathogenesis: dining on the host.
Microbiol Mol Biol Rev. 2025 Mar 27;89(1):e0001523. doi: 10.1128/mmbr.00015-23. Epub 2025 Feb 10.
5
A Limited Number of Amino Acid Permeases Are Crucial for Survival and Virulence.
Int J Microbiol. 2024 Aug 8;2024:5566438. doi: 10.1155/2024/5566438. eCollection 2024.
6
Pleiotropic roles of LAMMER kinase, Lkh1 in stress responses and virulence of .
Front Cell Infect Microbiol. 2024 May 7;14:1369301. doi: 10.3389/fcimb.2024.1369301. eCollection 2024.
8
Exposure of Cryptococcus neoformans to low nitrogen levels enhances virulence.
Int Microbiol. 2024 Oct;27(5):1587-1595. doi: 10.1007/s10123-024-00504-y. Epub 2024 Mar 14.
9
Proteomics of : Overview of Changes Triggered by Nitrogen Catabolite Repression.
J Fungi (Basel). 2023 Nov 12;9(11):1102. doi: 10.3390/jof9111102.
10
Factors Influencing the Nitrogen-Source Dependent Flucytosine Resistance in Cryptococcus Species.
mBio. 2023 Feb 28;14(1):e0345122. doi: 10.1128/mbio.03451-22. Epub 2023 Jan 19.

本文引用的文献

1
Agar as a gelling agent: chemical and physical analysis.
Plant Cell Rep. 1998 Jan;17(3):230-235. doi: 10.1007/s002990050384.
2
The GATA-type transcriptional activator Gat1 regulates nitrogen uptake and metabolism in the human pathogen Cryptococcus neoformans.
Fungal Genet Biol. 2011 Feb;48(2):192-9. doi: 10.1016/j.fgb.2010.07.011. Epub 2010 Jul 29.
3
Real-time imaging of trapping and urease-dependent transmigration of Cryptococcus neoformans in mouse brain.
J Clin Invest. 2010 May;120(5):1683-93. doi: 10.1172/JCI41963. Epub 2010 Apr 26.
5
Elucidating the pathogenesis of spores from the human fungal pathogen Cryptococcus neoformans.
Infect Immun. 2009 Aug;77(8):3491-500. doi: 10.1128/IAI.00334-09. Epub 2009 May 18.
7
Systematic genetic analysis of virulence in the human fungal pathogen Cryptococcus neoformans.
Cell. 2008 Oct 3;135(1):174-88. doi: 10.1016/j.cell.2008.07.046.
8
Dissecting individual steps of nitrogen transcription factor cooperation in the Aspergillus nidulans nitrate cluster.
Mol Microbiol. 2008 Sep;69(6):1385-98. doi: 10.1111/j.1365-2958.2008.06359.x. Epub 2008 Jul 20.
9
Recent advances in nitrogen regulation: a comparison between Saccharomyces cerevisiae and filamentous fungi.
Eukaryot Cell. 2008 Jun;7(6):917-25. doi: 10.1128/EC.00076-08. Epub 2008 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验