Department of Psychology, The College of New Jersey, P.O. Box 7718, Ewing, NJ 08628, USA.
Psychol Assess. 2011 Jun;23(2):287-99. doi: 10.1037/a0022054.
Taxometric analyses have proven helpful for distinguishing categorical and dimensional data. Many taxometric procedures require at least 3 variables for analysis. What if a construct is defined by only 2 conceptually nonredundant characteristics or a data set contains only 2 empirically nonredundant variables? In Study 1, we performed extensive simulations to determine whether informative results can be obtained when only 2 variables are available for taxometric analysis. The mean above minus below a cut (MAMBAC) and maximum slope (MAXSLOPE) procedures, used with parallel analyses of comparison data, successfully differentiated categorical and dimensional structure. With just 2 variables, it seems especially important that indicators vary across as many distinct values as possible and that investigators obtain as large a sample as possible. Additional findings address questions about the most effective way to implement taxometric analyses. In Study 2, the potential utility of 2-variable taxometric analysis is illustrated using data on proactive and reactive childhood aggression, where the results provided strong support for dimensional structure. As long as high-quality data are available, it appears that one can have confidence in the results of taxometric analyses performed with only 2 variables.
-taxometric 分析已被证明有助于区分分类和维度数据。许多 taxometric 程序至少需要 3 个变量进行分析。如果一个构念仅由 2 个概念上非冗余的特征定义,或者数据集仅包含 2 个经验上非冗余的变量怎么办?在研究 1 中,我们进行了广泛的模拟,以确定当仅可用于 taxometric 分析的 2 个变量时,是否可以获得有意义的结果。使用比较数据的平行分析的均值减去低于切割值(MAMBAC)和最大斜率(MAXSLOPE)程序成功地区分了分类和维度结构。只有 2 个变量,指标尽可能多地变化并且调查人员获得尽可能大的样本似乎尤为重要。其他发现涉及有关实施 taxometric 分析的最有效方法的问题。在研究 2 中,使用关于主动和反应性儿童攻击的数据分析说明了 2 变量 taxometric 分析的潜在效用,结果为维度结构提供了有力的支持。只要有高质量的数据,使用仅 2 个变量进行的 taxometric 分析的结果似乎可以令人置信。