Centre for Planetary Science and Exploration (CPSX), The University of Western Ontario, London, Ontario, Canada.
Geobiology. 2011 May;9(3):233-49. doi: 10.1111/j.1472-4669.2011.00275.x. Epub 2011 Mar 28.
One of the keys to understanding and identifying life on other planets is to study the preservation of organic compounds and their precursor micro-organisms on Earth. Rio Tinto in southwestern Spain is a well documented site of microbial preservation within iron sulphates and iron oxides over a period of 2.1 Ma. This study has investigated the preservation of filamentous iron oxidising bacteria and organics through optical microscopy, scanning electron microscopy (SEM) and Fourier transform infra-red (FTIR) spectroscopy, from laboratory cultures of natural samples to contemporary natural materials to million-year old river terraces. Up to 40% elemental carbon and >7% nitrogen has been identified within microbial filaments and cell clusters in all samples through SEM EDS analyses. FTIR spectroscopy identified C-H(x) absorption bands between 2960 and 2800 cm(-1), Amide I and II absorption bands at 1656 and 1535 cm(-1), respectively and functional group vibrations from within nucleic acids at 917, 1016 and 1124 cm(-1). Absorption bands tracing the diagenetic transformation of jarosite to goethite to hematite through the samples are also identified. This combination of mineralogy, microbial morphology and biomolecular evidence allows us to further understand how organic fossils are created and preserved in iron-rich environments, and ultimately will aid in the search for the earliest life on Earth and potential organics on Mars.
研究地球上有机化合物及其前体微生物的保存,是理解和识别其他行星上生命的关键之一。西班牙西南部的里奥廷托是一个经过充分记录的微生物在铁硫酸盐和氧化铁中保存的地点,时间跨度为 210 万年。本研究通过光学显微镜、扫描电子显微镜(SEM)和傅里叶变换红外(FTIR)光谱法,从天然样品的实验室培养物到当代天然材料再到百万年前的河流阶地,调查了丝状铁氧化细菌和有机物的保存情况。通过 SEM EDS 分析,在所有样品中的微生物丝和细胞簇中,鉴定出高达 40%的元素碳和>7%的氮。FTIR 光谱在 2960 至 2800 cm(-1) 之间识别出 C-H(x)吸收带,在 1656 和 1535 cm(-1) 处分别识别出酰胺 I 和 II 吸收带,以及在 917、1016 和 1124 cm(-1) 处的核酸内的官能团振动。在样品中还鉴定出从黄钾铁矾到针铁矿再到赤铁矿的交代转化的吸收带。这种矿物学、微生物形态和生物分子证据的结合,使我们能够进一步了解有机化石是如何在富铁环境中形成和保存的,并最终有助于寻找地球上最早的生命和火星上的潜在有机物。