Suppr超能文献

开发一种基于血液的基因表达算法,用于评估非糖尿病患者的阻塞性冠状动脉疾病。

Development of a blood-based gene expression algorithm for assessment of obstructive coronary artery disease in non-diabetic patients.

机构信息

CardioDx, Inc., 2500 Faber Place, Palo Alto, CA 94602, USA.

出版信息

BMC Med Genomics. 2011 Mar 28;4:26. doi: 10.1186/1755-8794-4-26.

Abstract

BACKGROUND

Alterations in gene expression in peripheral blood cells have been shown to be sensitive to the presence and extent of coronary artery disease (CAD). A non-invasive blood test that could reliably assess obstructive CAD likelihood would have diagnostic utility.

RESULTS

Microarray analysis of RNA samples from a 195 patient Duke CATHGEN registry case:control cohort yielded 2,438 genes with significant CAD association (p < 0.05), and identified the clinical/demographic factors with the largest effects on gene expression as age, sex, and diabetic status. RT-PCR analysis of 88 CAD classifier genes confirmed that diabetic status was the largest clinical factor affecting CAD associated gene expression changes. A second microarray cohort analysis limited to non-diabetics from the multi-center PREDICT study (198 patients; 99 case: control pairs matched for age and sex) evaluated gene expression, clinical, and cell population predictors of CAD and yielded 5,935 CAD genes (p < 0.05) with an intersection of 655 genes with the CATHGEN results. Biological pathway (gene ontology and literature) and statistical analyses (hierarchical clustering and logistic regression) were used in combination to select 113 genes for RT-PCR analysis including CAD classifiers, cell-type specific markers, and normalization genes.RT-PCR analysis of these 113 genes in a PREDICT cohort of 640 non-diabetic subject samples was used for algorithm development. Gene expression correlations identified clusters of CAD classifier genes which were reduced to meta-genes using LASSO. The final classifier for assessment of obstructive CAD was derived by Ridge Regression and contained sex-specific age functions and 6 meta-gene terms, comprising 23 genes. This algorithm showed a cross-validated estimated AUC = 0.77 (95% CI 0.73-0.81) in ROC analysis.

CONCLUSIONS

We have developed a whole blood classifier based on gene expression, age and sex for the assessment of obstructive CAD in non-diabetic patients from a combination of microarray and RT-PCR data derived from studies of patients clinically indicated for invasive angiography.

CLINICAL TRIAL REGISTRATION INFORMATION

PREDICT, Personalized Risk Evaluation and Diagnosis in the Coronary Tree, http://www.clinicaltrials.gov, NCT00500617.

摘要

背景

外周血细胞中的基因表达改变已被证明对冠状动脉疾病(CAD)的存在和程度敏感。一种能够可靠评估阻塞性 CAD 可能性的非侵入性血液检测将具有诊断效用。

结果

对来自 195 名杜克 CATHGEN 登记病例对照队列的 RNA 样本进行微阵列分析,得出了 2438 个具有显著 CAD 关联的基因(p<0.05),并确定了对基因表达影响最大的临床/人口统计学因素为年龄、性别和糖尿病状态。对 88 个 CAD 分类器基因的 RT-PCR 分析证实,糖尿病状态是影响 CAD 相关基因表达变化的最大临床因素。第二项微阵列队列分析仅限于多中心 PREDICT 研究中的非糖尿病患者(198 例;99 例病例:年龄和性别匹配的对照对),评估 CAD 相关基因的表达、临床和细胞群体预测因子,并得出了 5935 个 CAD 基因(p<0.05),与 CATHGEN 结果的交集为 655 个基因。生物途径(基因本体论和文献)和统计分析(层次聚类和逻辑回归)相结合,选择了 113 个用于 RT-PCR 分析的基因,包括 CAD 分类器、细胞类型特异性标志物和归一化基因。在 640 名非糖尿病患者样本的 PREDICT 队列中对这 113 个基因进行了 RT-PCR 分析,用于算法开发。基因表达相关性确定了 CAD 分类器基因的聚类,这些聚类使用 LASSO 简化为元基因。评估阻塞性 CAD 的最终分类器是通过 Ridge Regression 得出的,包含性别特异性年龄函数和 6 个元基因术语,由 23 个基因组成。该算法在 ROC 分析中的交叉验证估计 AUC 为 0.77(95%CI 0.73-0.81)。

结论

我们基于基因表达、年龄和性别,从微阵列和 RT-PCR 数据的组合中开发了一种用于评估非糖尿病患者阻塞性 CAD 的全血分类器,这些数据来自于对临床上需要进行有创血管造影的患者进行的研究。

临床试验注册信息

PREDICT,冠状动脉树中的个性化风险评估和诊断,http://www.clinicaltrials.gov,NCT00500617。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验