Mo Xian-Gang, Liu Wei, Yang Yao, Imani Saber, Lu Shan, Dan Guorong, Nie Xuqiang, Yan Jun, Zhan Rixing, Li Xiaohui, Deng Youcai, Chen Bingbo, Cai Yue
Department of Geriatrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
Health Physical Examination Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
J Cell Biochem. 2019 Oct;120(10):18219-18235. doi: 10.1002/jcb.29128. Epub 2019 Jun 27.
This study aims to explore the predictive noninvasive biomarker for obstructive coronary artery disease (CAD). By using the data set GSE90074, weighted gene co-expression network analysis (WGCNA), and protein-protein interactive network, construction of differentially expressed genes in peripheral blood mononuclear cells was conducted to identify the most significant gene clusters associated with obstructive CAD. Univariate and multivariate stepwise logistic regression analyses and receiver operating characteristic analysis were used to predicate the diagnostic accuracy of biomarker candidates in the detection of obstructive CAD. Furthermore, functional prediction of candidate gene biomarkers was further confirmed in ST-segment elevation myocardial infarction (STEMI) patients or stable CAD patients by using the datasets of GSE62646 and GSE59867. We found that the blue module discriminated by WGCNA contained 13 hub-genes that could be independent risk factors for obstructive CAD (P < .05). Among these 13 hub-genes, a four-gene signature including neutrophil cytosol factor 2 (NCF2, P = .025), myosin-If (MYO1F, P = .001), sphingosine-1-phosphate receptor 4 (S1PR4, P = .015), and ficolin-1 (FCN1, P = .012) alone or combined with two risk factors (male sex and hyperlipidemia) may represent potential diagnostic biomarkers in obstructive CAD. Furthermore, the messenger RNA levels of NCF2, MYO1F, S1PR4, and FCN1 were higher in STEMI patients than that in stable CAD patients, although S1PR4 showed no statistical difference (P > .05). This four-gene signature could also act as a prognostic biomarker to discriminate STEMI patients from stable CAD patients. These findings suggest a four-gene signature (NCF2, MYO1F, S1PR4, and FCN1) alone or combined with two risk factors (male sex and hyperlipidemia) as a promising prognostic biomarker in the diagnosis of STEMI. Well-designed cohort studies should be implemented to warrant the diagnostic value of these genes in clinical purpose.
本研究旨在探索阻塞性冠状动脉疾病(CAD)的预测性非侵入性生物标志物。通过使用数据集GSE90074、加权基因共表达网络分析(WGCNA)和蛋白质-蛋白质相互作用网络,对外周血单核细胞中的差异表达基因进行构建,以识别与阻塞性CAD相关的最显著基因簇。使用单变量和多变量逐步逻辑回归分析以及受试者工作特征分析来预测生物标志物候选物在阻塞性CAD检测中的诊断准确性。此外,通过使用GSE62646和GSE59867数据集,在ST段抬高型心肌梗死(STEMI)患者或稳定型CAD患者中进一步证实了候选基因生物标志物的功能预测。我们发现,WGCNA区分的蓝色模块包含13个中心基因,这些基因可能是阻塞性CAD的独立危险因素(P < 0.05)。在这13个中心基因中,一个由中性粒细胞胞质因子2(NCF2,P = 0.025)、肌球蛋白-If(MYO1F,P = 0.001)、鞘氨醇-1-磷酸受体4(S1PR4,P = 0.015)和纤维胶凝蛋白-1(FCN1,P = 0.012)组成的四基因特征单独或与两个危险因素(男性和高脂血症)联合,可能代表阻塞性CAD的潜在诊断生物标志物。此外,STEMI患者中NCF2、MYO1F、S1PR4和FCN1的信使RNA水平高于稳定型CAD患者,尽管S1PR4无统计学差异(P > 0.05)。这个四基因特征也可以作为一种预后生物标志物,用于区分STEMI患者和稳定型CAD患者。这些发现表明,一个四基因特征(NCF2、MYO1F、S1PR4和FCN1)单独或与两个危险因素(男性和高脂血症)联合,作为STEMI诊断中有前景的预后生物标志物。应开展精心设计的队列研究,以确保这些基因在临床应用中的诊断价值。