Zhang Ge, Cui Xiaolin, Qin Zhen, Wang Zeyu, Lu Yongzheng, Xu Yanyan, Xu Shuai, Tang Laiyi, Zhang Li, Liu Gangqiong, Wang Xiaofang, Zhang Jinying, Tang Junnan
Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan 450052, China.
iScience. 2023 Aug 9;26(9):107587. doi: 10.1016/j.isci.2023.107587. eCollection 2023 Sep 15.
Acute myocardial infarction dominates coronary artery disease mortality. Identifying bio-signatures for plaque destabilization and rupture is important for preventing the transition from coronary stability to instability and the occurrence of thrombosis events. This computational systems biology study enrolled 2,235 samples from 22 independent bulks cohorts and 14 samples from two single-cell cohorts. A machine-learning integrative program containing nine learners was developed to generate a warning classifier linked to atherosclerotic plaque vulnerability signature (APVS). The classifier displays the reliable performance and robustness for distinguishing ST-elevation myocardial infarction from chronic coronary syndrome at presentation, and revealed higher accuracy to 33 pathogenic biomarkers. We also developed an APVS-based quantification system (APVSLevel) for comprehensively quantifying atherosclerotic plaque vulnerability, empowering early-warning capabilities, and accurate assessment of atherosclerosis severity. It unraveled the multidimensional dysregulated mechanisms at high resolution. This study provides a potential tool for macro-level differential diagnosis and evaluation of subtle genetic pathological changes in atherosclerosis.
急性心肌梗死在冠状动脉疾病死亡率中占主导地位。识别斑块不稳定和破裂的生物标志物对于预防冠状动脉从稳定状态转变为不稳定状态以及血栓形成事件的发生至关重要。这项计算系统生物学研究纳入了来自22个独立批量队列的2235个样本和来自两个单细胞队列的14个样本。开发了一个包含九个学习器的机器学习整合程序,以生成与动脉粥样硬化斑块易损性特征(APVS)相关的预警分类器。该分类器在区分ST段抬高型心肌梗死和慢性冠状动脉综合征方面表现出可靠的性能和稳健性,并对33种致病生物标志物显示出更高的准确性。我们还开发了一种基于APVS的量化系统(APVSLevel),用于全面量化动脉粥样硬化斑块易损性,增强预警能力,并准确评估动脉粥样硬化严重程度。它在高分辨率下揭示了多维失调机制。本研究为动脉粥样硬化宏观层面的鉴别诊断和细微遗传病理变化的评估提供了一种潜在工具。