Suppr超能文献

基于粘附和摩擦测量的静电驱动 MEMS 器件中不同黏附机制的纳米级特性研究。

Nanoscale characterization of different stiction mechanisms in electrostatically driven MEMS devices based on adhesion and friction measurements.

机构信息

CNRS, LAAS, 7 Avenue du Colonel Roche, F-31077 Toulouse, France.

出版信息

J Colloid Interface Sci. 2011 Jun 1;358(1):1-13. doi: 10.1016/j.jcis.2011.03.005. Epub 2011 Mar 8.

Abstract

In this work, for the first time different stiction mechanisms in electrostatic micro-electromechanical systems (MEMS) switches were studied. In these devices stiction can be caused by two main mechanisms: dielectric charging and meniscus formation resulting from the adsorbed water film between the switch bridge and the dielectric layer. The effect of each mechanism and their interaction were investigated by measuring the adhesive and friction forces under different electrical stress conditions and relative humidity levels. An atomic force microscope (AFM) was used to perform force-distance and friction measurements on the nanoscale. A novel technique was proposed to measure the induced surface potential over the dielectric surface and was used to explain the obtained adhesive and friction results. The evolution of adhesive force with time was monitored in order to study the charging/discharging processes in the dielectric film. The assessment methodology is employed for application in RF-MEMS switches and could be extended to other electrostatic MEMS devices. The study provides an in-depth understanding of different stiction mechanisms, and explanation for the literature reported device level measurements for electrostatic capacitive MEMS switches.

摘要

在这项工作中,首次研究了静电微机电系统(MEMS)开关中的不同粘滞机制。在这些器件中,粘滞可能由两种主要机制引起:介电充电和由于开关桥和介电层之间吸附的水膜而形成的弯月面。通过在不同的电应力条件和相对湿度水平下测量粘附力和摩擦力,研究了每种机制及其相互作用的影响。原子力显微镜(AFM)用于在纳米尺度上进行力-距离和摩擦力测量。提出了一种新的技术来测量介电表面上的感应表面电势,并用于解释所得到的粘附力和摩擦力结果。监测了随时间的粘附力的演变,以研究介电膜中的充电/放电过程。评估方法用于 RF-MEMS 开关的应用,并可扩展到其他静电 MEMS 设备。该研究深入了解了不同的粘滞机制,并对静电电容式 MEMS 开关的文献报道的器件级测量结果进行了解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验