Department of Molecular Biology of Protists, Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Parasitology, České Budějovice, Czech Republic.
Genome Biol Evol. 2011;3:359-64. doi: 10.1093/gbe/evr029. Epub 2011 Mar 27.
Genes encoding enzymes of the tetrapyrrole biosynthetic pathway were searched within Euglena gracilis EST databases and 454 genome reads and their 5' end regions were sequenced when not available. Phylogenetic analyses and protein localization predictions support the hypothesis concerning the presence of two separated tetrapyrrole pathways in E. gracilis. One of these pathways resembles the heme synthesis in primarily heterotrophic eukaryotes and was presumably present in the host cell prior to secondary endosymbiosis with a green alga. The second pathway is similar to the plastid-localized tetrapyrrole syntheses in plants and photosynthetic algae. It appears to be localized to the secondary plastid, presumably derived from an algal endosymbiont and probably serves only for the production of plastidial heme and chlorophyll. Thus, E. gracilis represents an evolutionary intermediate in a metabolic transformation of a primary heterotroph to a photoautotroph through secondary endosymbiosis. We propose here that the tetrapyrrole pathway serves as a highly informative marker for the evolution of plastids and plays a crucial role in the loss of plastids.
在眼虫 EST 数据库和 454 基因组读取中搜索编码四吡咯生物合成途径的酶的基因,当没有可用的 5' 端区域时,对其进行测序。系统发育分析和蛋白质定位预测支持了关于眼虫中存在两种分离的四吡咯途径的假设。其中一种途径类似于主要异养真核生物中的血红素合成,并且在与绿藻的二次内共生之前可能存在于宿主细胞中。第二种途径类似于植物和光合藻类中定位于质体的四吡咯合成。它似乎定位于次生质体,可能来自藻类内共生体,可能仅用于质体血红素和叶绿素的生产。因此,眼虫代表了通过二次内共生从主要异养生物向光合自养生物的代谢转化的进化中间体。我们在这里提出,四吡咯途径是质体进化的高度信息标志物,并在质体丧失中起着关键作用。