Department of Chemistry, University of Auckland, Private Bag 92019, Auckland, New Zealand.
Dalton Trans. 2011 May 14;40(18):5102-15. doi: 10.1039/c1dt10224a. Epub 2011 Mar 29.
Whereas complexes of divalent metal halides (X = Cl, Br, I) with/from pyridine commonly crystallise as trans-[M(py)(4)X(2)]·2py, M on a site of 222 symmetry in space group Ccca, true for CuCl(2) and CuBr(2) in particular, the copper(II) iodide adduct is of the form [Cu(py)(4)I]I·2py, Cu on a site of mm2 symmetry in space group Cmcm, and five-coordinate (square-pyramidal), the same cationic species also being found in 2Cu(py)(4)I·[(py)(2)Cu(μ-I)(2)Cu(py)(2)] (structurally defined). Bromide or N-thiocyanate may be substituted for the unbound iodide ion in the solvated salt, resulting in complexes which crystallize in space group Ccca, but with both anions and the metal atom disordered. In [Cu(py)(4)(I(3))(2)], a pair of long Cu···I contacts approach a square-planar Cu(py)(4) array. Assignments of the ν(CuN) and ν(CuX) (X = Br, I, SCN) bands in the far-IR spectra are made, the latter with the aid of analogous assignments for [Cu(py)(2)X(2)] (X = Cl, Br), which show a dependence of ν(CuX) on the Cu-X bond length that is very similar to that determined previously for copper(i) halide complexes. The structure of the adventitious complex (trans-)(H(2)O)(py)(4)CuClCu(py)(4)(3)·H(2)O is also recorded, with six- and five-coordinate copper atoms; rational synthesis provides {Cu(py)(4)}(2)(μ-Cl)(3)·H(2)O with one water molecule less. In {Cu(py)(4)Cl}((∞|∞))·3py, square pyramidal Cu(py)(4)Cl cations, assisted by Cl···Cu interactions, stack to give rise to infinite polymeric strings. Several of these compounds were prepared mechanochemically, illustrating the applicability of this method to syntheses involving redox reactions as well as to complex syntheses involving up to five components. The totality of results demonstrates that the [Cu(II)(py)(4)] entity can be stabilized in an unexpectedly diverse range of mononuclear and multinuclear complexes through the presence of lattice pyridine molecules, the bulky triiodide ion, or a combination of both.
虽然二价金属卤化物(X = Cl、Br、I)与吡啶的配合物通常以反式-[M(py)(4)X(2)]·2py 的形式结晶,其中 M 位于空间群 Ccca 的 222 对称点上,这对 CuCl(2) 和 CuBr(2 尤其如此,但铜(II)碘化物加合物的形式为[Cu(py)(4)I]I·2py,其中 Cu 位于空间群 Cmcm 的 mm2 对称点上,为五配位(四方锥),同样的阳离子物种也存在于 2Cu(py)(4)I·[(py)(2)Cu(μ-I)(2)Cu(py)(2)](结构确定)中。在溶剂化盐中,溴化物或 N-硫氰酸盐可能取代未结合的碘离子,导致配合物在空间群 Ccca 中结晶,但阴离子和金属原子都处于无序状态。在[Cu(py)(4)(I(3))(2)]中,一对长的 Cu···I 接触接近一个正方形平面的 Cu(py)(4) 阵列。在远红外光谱中对 ν(CuN)和 ν(CuX)(X = Br、I、SCN)带的分配进行了分配,后者借助于类似的[Cu(py)(2)X(2)](X = Cl、Br)的分配,显示 ν(CuX)与 Cu-X 键长的依赖性非常相似,与之前确定的铜(i)卤化物配合物的依赖性非常相似。还记录了偶然配合物(trans-)(H(2)O)(py)(4)CuClCu(py)(4)(3)·H(2)O 的结构,其中含有六配位和五配位的铜原子;合理的合成提供了一个水分子较少的{Cu(py)(4)}(2)(μ-Cl)(3)·H(2)O。在{Cu(py)(4)Cl}((∞|∞))·3py 中,正方形锥状Cu(py)(4)Cl阳离子,在 Cl···Cu 相互作用的辅助下,堆积成无限长的聚合物链。这些化合物中的几个是通过机械化学合成的,这说明了这种方法不仅适用于涉及氧化还原反应的合成,也适用于涉及多达五个组分的复杂合成。总之,结果表明,通过晶格吡啶分子、庞大的三碘化物离子或两者的组合,可以在单核和多核配合物中稳定[Cu(II)(py)(4)]实体,其范围出乎意料地多样化。