Cho E, Kim B, Choi S, Han J, Jin J, Han J, Lim J, Heo Y, Kim S, Sung G Y, Kang S
School of Mechanical Engineering, Yonsei University, 134, Shinchon-dong, Seodaemun-gu, Seoul 120-749, Korea.
J Nanosci Nanotechnol. 2011 Jan;11(1):417-21. doi: 10.1166/jnn.2011.3277.
This paper introduces technology to fabricate a guided mode resonance filter biochip using injection molding. Of the various nanofabrication processes that exist, injection molding is the most suitable for the mass production of polymer nanostructures. Fabrication of a nanograting pattern for guided mode resonance filters by injection molding requires a durable metal stamp, because of the high injection temperature and pressure. Careful consideration of the optimized process parameters is also required to achieve uniform sub-wavelength gratings with high fidelity. In this study, a metallic nanostructure pattern to be used as the stamp for the injection molding process was fabricated using electron beam lithography, a UV nanoimprinting process, and an electroforming process. A one-dimensional nanograting substrate was replicated by injection molding, during which the process parameters were controlled. To evaluate the geometric quality of the injection molded nanograting patterns, the surface profile of the fabricated nanograting for different processing conditions was analyzed using an atomic force microscope and a scanning electron microscope. Finally, to demonstrate the feasibility of the proposed process for fabricating guided mode resonance filter biochips, a high-refractive-index material was deposited on the polymer nanograting and its guided mode resonance characteristics were analyzed.
本文介绍了一种利用注塑成型制造导模共振滤波器生物芯片的技术。在现有的各种纳米制造工艺中,注塑成型最适合用于聚合物纳米结构的大规模生产。由于注塑温度和压力较高,通过注塑成型制造导模共振滤波器的纳米光栅图案需要一个耐用的金属模具。为了获得具有高保真度的均匀亚波长光栅,还需要仔细考虑优化的工艺参数。在本研究中,使用电子束光刻、紫外纳米压印工艺和电铸工艺制造了一种用作注塑成型工艺模具的金属纳米结构图案。通过注塑成型复制了一维纳米光栅基板,在此过程中控制工艺参数。为了评估注塑成型纳米光栅图案的几何质量,使用原子力显微镜和扫描电子显微镜分析了不同加工条件下制造的纳米光栅的表面轮廓。最后,为了证明所提出的制造导模共振滤波器生物芯片工艺的可行性,在聚合物纳米光栅上沉积了一种高折射率材料,并分析了其导模共振特性。