Debye Institute for Nanomaterials, Nanophotonics Section, Utrecht University, PO Box 80000, 3508 TA Utrecht, The Netherlands.
Nanotechnology. 2011 May 27;22(21):215607. doi: 10.1088/0957-4484/22/21/215607. Epub 2011 Mar 31.
Systematic investigations of the energy loss threshold above which the irradiation-induced elongation of spherical Au nanoparticles occurs are reported. Silica films containing Au nanoparticles with average diameters of 15-80 nm embedded within a single plane were irradiated with 12-54 MeV Ag and 10-45 MeV Cu ions at 300 K and at normal incidence. We demonstrate that the efficiency of the ion-induced nanoparticle elongation increases linearly with the electronic energy transferred per ion track length unit from the energetic ions to the silica film. Ion beam shaping occurs above a threshold value of the specific electronic energy transfer. Three relevant regions are identified with respect to the original size of the Au nanoparticles. For 15 and 30 nm diameter particles, elongation occurs for electronic stopping power larger than 3.5 keV nm(-1). For Au nanoparticles with 40-50 nm diameter an electronic stopping power above 5.5 keV nm(-1) is required for elongation to be observed. Elongation of Au nanoparticles with 80 nm diameter is observed for electronic stopping between ∼ 7-8 keV nm(-1). For all combinations of ions and energies, the ion track temperature profiles are calculated within the framework of the thermal spike model. The correlation between experimental results and simulated data indicates a thermal origin of the increase in the elongation rate with increasing the track diameter.
系统研究了辐射诱导球形 Au 纳米粒子伸长的能量损失阈值以上的情况。在 300 K 和正常入射条件下,用 12-54 MeV Ag 和 10-45 MeV Cu 离子辐照了平均直径为 15-80nm 的嵌入单个平面内的二氧化硅薄膜中的 Au 纳米粒子。我们证明,离子诱导纳米粒子伸长的效率与从高能离子到二氧化硅薄膜的每单位离子轨迹长度传递的电子能量线性相关。在特定电子能量传递的阈值以上会发生离子束整形。对于原始 Au 纳米粒子的大小,确定了三个相关区域。对于直径为 15 和 30nm 的颗粒,伸长发生在电子阻止本领大于 3.5 keVnm^(-1)。对于直径为 40-50nm 的 Au 纳米粒子,需要电子阻止本领大于 5.5keVnm^(-1)才能观察到伸长。直径为 80nm 的 Au 纳米粒子的伸长发生在电子阻止本领在约 7-8keVnm^(-1)之间。对于所有离子和能量的组合,在热冲击模型的框架内计算了离子轨迹的温度分布。实验结果与模拟数据之间的相关性表明,随着轨迹直径的增加,伸长率的增加与温度有关。