State Ministry of Agriculture Key Laboratory for Monitoring and Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing 210095, China.
J Biosci. 2011 Mar;36(1):123-37. doi: 10.1007/s12038-011-9016-2.
In Arabidopsis thaliana (Arabidopsis) treated with the harpin protein HrpN Ea, resistance to the green peach aphid Myzus persicae, a generalist phloem-feeding insect, develops with induced expression of the AtMYB44 gene. Special GLUCAN SYNTHESIS-LIKE (GSL) genes and beta-1,3-glucan callose play an important role in plant defence responses to attacks by phloem-feeding insects. Here we report that AtGLS5 and AtMYB44 are both required for Hrp Ea-induced repression of M. persicae feeding from the phloem of Arabidopsis leaves. In 24 h successive surveys on large-scale aphid populations, the proportion of feeding aphids was much smaller in HrpN Ea-treated plants than in control plants, and aphids preferred to feed from the 37 tested atgsl mutants rather than the wild-type plant. The atgsl mutants were generated previously by mutagenesis in 12 identified AtGSL genes (AtGSL1 through AtGSL12); in the 24 h survey, both atgsl5 and atgsl6 tolerated aphid feeding, and atgsl5 was the most tolerant. Consistently, atgsl5 was also most inhibitive to the deterrent effect of HrpN Ea on the phloem-feeding activity of aphids as monitored by the electrical penetration graph technique. These results suggested an important role of the AtGSL5 gene in the effect of HrpN Ea. In response to HrpN Ea, AtGSL5 expression and callose deposition were induced in the wild-type plant but not in atgsl5. In response to HrpN Ea, moreover, the AtMYB44 gene known to be required for repression of aphid reproduction on the plant was also required for repression of the phloem-feeding activity. Small amounts of the AtGSL5 transcript and callose deposition were detected in the atmyb44 mutant, as in atgsl5. Both mutants performed similarly in tolerating the phloem-feeding activity and impairing the deterrent effect of HrpN Ea, suggesting that AtGSL5 and AtMYB44 both contributed to the effect.
在拟南芥中,用 harpin 蛋白 HrpN Ea 处理后,对绿桃蚜 Myzus persicae(一种一般性韧皮部取食昆虫)的抗性会随着 AtMYB44 基因的诱导表达而发展。特殊的 GLUCAN SYNTHESIS-LIKE (GSL) 基因和 β-1,3-葡聚糖几丁质在植物对韧皮部取食昆虫的防御反应中起着重要作用。在这里,我们报告说 AtGLS5 和 AtMYB44 都需要 Hrp Ea 诱导来抑制绿桃蚜从拟南芥叶片韧皮部取食。在对大规模蚜虫种群进行的 24 小时连续调查中,用 HrpN Ea 处理的植物中取食的蚜虫比例明显小于对照植物,并且蚜虫更喜欢从 37 个测试的 atgsl 突变体而不是野生型植物取食。这些 atgsl 突变体是以前通过对 12 个已鉴定的 AtGSL 基因(AtGSL1 到 AtGSL12)进行诱变产生的;在 24 小时调查中,atgsl5 和 atgsl6 都能容忍蚜虫取食,而 atgsl5 是最耐受的。一致地,atgsl5 也最能抑制 HrpN Ea 对蚜虫韧皮部取食活动的驱避作用,这可以通过电穿透图技术监测到。这些结果表明 AtGSL5 基因在 HrpN Ea 的作用中起着重要作用。对 HrpN Ea 的反应中,AtGSL5 的表达和几丁质沉积在野生型植物中被诱导,但在 atgsl5 中没有。此外,已知对抑制蚜虫在植物上繁殖有要求的 AtMYB44 基因也对抑制蚜虫的韧皮部取食活动有要求。在 atmyb44 突变体中检测到少量的 AtGSL5 转录本和几丁质沉积,与 atgsl5 类似。这两个突变体在耐受韧皮部取食活性和削弱 HrpN Ea 的驱避作用方面表现相似,这表明 AtGSL5 和 AtMYB44 都对该作用有贡献。