Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom and.
Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal.
J Neurosci. 2019 Jan 2;39(1):96-111. doi: 10.1523/JNEUROSCI.1109-18.2018. Epub 2018 Nov 5.
The evolution of species-specific song patterns is a driving force in the speciation of acoustic communicating insects. It must be closely linked to adaptations of the neuronal network controlling the underlying singing motor activity. What are the cellular and network properties that allow generating different songs? In five cricket species, we analyzed the structure and activity of the identified abdominal ascending opener interneuron, a homologous key component of the singing central pattern generator. The structure of the interneuron, based on the position of the cell body, ascending axon, dendritic arborization pattern, and dye coupling, is highly similar across species. The neuron's spike activity shows a tight coupling to the singing motor activity. In all species, current injection into the interneuron drives artificial song patterns, highlighting the key functional role of this neuron. However, the pattern of the membrane depolarization during singing, the fine dendritic and axonal ramifications, and the number of dye-coupled neurons indicate species-specific adaptations of the neuronal network that might be closely linked to the evolution of species-specific singing. A fundamental question in evolutionary neuroscience is how species-specific behaviors arise in closely related species. We demonstrate behavioral, neurophysiological, and morphological evidence for homology of one key identified interneuron of the singing central pattern generator in five cricket species. Across-species differences of this interneuron are also observed, which might be important to the generation of the species-specific song patterns. This work offers a comprehensive and detailed comparative analysis addressing the neuronal basis of species-specific behavior.
物种特异性歌曲模式的进化是声学通讯昆虫物种形成的驱动力。它必须与控制基础歌唱运动活动的神经元网络的适应性密切相关。产生不同歌曲的细胞和网络特性是什么?在五种蟋蟀物种中,我们分析了已鉴定的腹部上升开口神经元的结构和活性,该神经元是歌唱中枢模式发生器的同源关键组成部分。基于细胞体位置、上升轴突、树突分支模式和染料偶联,该神经元的结构在物种间高度相似。神经元的尖峰活动与歌唱运动活动紧密耦合。在所有物种中,向神经元中注入电流会驱动人工歌唱模式,突出了该神经元的关键功能作用。然而,在歌唱过程中膜去极化的模式、精细的树突和轴突分支以及偶联的神经元数量表明,神经元网络的物种特异性适应可能与物种特异性歌唱的进化密切相关。进化神经科学中的一个基本问题是,在密切相关的物种中,如何产生物种特异性行为。我们证明了五个蟋蟀物种的歌唱中枢模式发生器的一个关键已鉴定神经元在行为、神经生理学和形态学上具有同源性。还观察到这个神经元的种间差异,这可能对产生物种特异性的歌曲模式很重要。这项工作提供了全面详细的比较分析,解决了物种特异性行为的神经元基础问题。