Suppr超能文献

真菌几丁质酶修饰蛋白对重组玉米几丁质酶的修饰。

Modification of recombinant maize ChitA chitinase by fungal chitinase-modifying proteins.

机构信息

Bacterial Food-borne Pathogens and Mycology Research Unit, National Center for Agriculture Utilization Research, Peoria, IL 61604, USA.

出版信息

Mol Plant Pathol. 2011 May;12(4):365-72. doi: 10.1111/j.1364-3703.2010.00677.x. Epub 2010 Nov 25.

Abstract

In commercial maize, there are at least two different alleles of the chiA gene that encode alloforms of ChitA chitinase, a protein that is abundant in developing seed. Both known alloforms are modified by Bz-cmp, a chitinase-modifying protein (cmp) secreted by the fungal pathogen Bipolaris zeicola. One alloform (ChitA-B73) is also modified by Stm-cmp, a protein secreted by the fungal pathogen Stenocarpella maydis, whereas the other (ChitA-LH82) is resistant. The two ChitA alloforms possess six differences or polymorphisms (P1-P6). To determine whether the P2 polymorphism in the chitin-binding domain is responsible for resistance or susceptibility to modification by Stm-cmp, and to determine whether Stm-cmp and Bz-cmp are proteases, heterologous expression strains of the yeast Pichia pastoris that produce recombinant maize ChitA (rChitA) alloforms and mutant rChitAs were created. rChitA alloforms and mutant rChitAs were purified from yeast cultures and used as substrates in assays with Stm-cmp and Bz-cmp. As with native protein, Bz-cmp modified both rChitA-LH82 and rChitA-B73, whereas Stm-cmp modified rChitA-B73 only. Mutant rChitAs, in which the P2 amino acids were changed to those of the other alloform, resulted in a significant exchange in Stm-cmp susceptibility. Amino-terminal sequencing of unmodified and modified rChitA-B73 demonstrated that Stm-cmp cleaves the peptide bond on the amino-terminal side of the P2 alanine, whereas Bz-cmp cleaves in the poly-glycine hinge region, the site of P3. The results demonstrate that Stm-cmp and Bz-cmp are proteases that truncate ChitA chitinase at the amino terminus, but at different sites. Both sites correspond to polymorphisms in the two alloforms, suggesting that the sequence diversity at P2 and P3 is the result of selective pressure to prevent truncation by fungal proteases.

摘要

在商业玉米中,chiA 基因至少有两个不同的等位基因,它们编码 ChitA 几丁质酶的同种型,这种蛋白质在发育中的种子中含量丰富。已知的两种同种型都被真菌病原体双极镰刀菌分泌的几丁质酶修饰蛋白(cmp)Bz-cmp 修饰。一种同种型(ChitA-B73)也被真菌病原体玉米赤霉分泌的蛋白 Stm-cmp 修饰,而另一种(ChitA-LH82)则具有抗性。这两种 ChitA 同种型具有六个差异或多态性(P1-P6)。为了确定几丁质结合域中的 P2 多态性是否导致对 Stm-cmp 修饰的抗性或敏感性,以及确定 Stm-cmp 和 Bz-cmp 是否为蛋白酶,构建了产生重组玉米 ChitA(rChitA)同种型和突变 rChitA 的酵母毕赤酵母异源表达菌株。从酵母培养物中纯化 rChitA 同种型和突变 rChitA,并将其用作 Stm-cmp 和 Bz-cmp 测定中的底物。与天然蛋白一样,Bz-cmp 修饰了 rChitA-LH82 和 rChitA-B73,而 Stm-cmp 仅修饰 rChitA-B73。突变 rChitA 中,将 P2 氨基酸改变为另一种同种型的氨基酸,导致 Stm-cmp 敏感性显著改变。未修饰和修饰的 rChitA-B73 的氨基末端测序表明,Stm-cmp 在 P2 丙氨酸的氨基末端侧切割肽键,而 Bz-cmp 在多甘氨酸铰链区域,即 P3 位点切割。结果表明,Stm-cmp 和 Bz-cmp 是蛋白酶,它们在氨基末端截断 ChitA 几丁质酶,但在不同的位点。两个位点都对应于两种同种型的多态性,表明 P2 和 P3 处的序列多样性是防止真菌蛋白酶截断的选择压力的结果。

相似文献

1
Modification of recombinant maize ChitA chitinase by fungal chitinase-modifying proteins.
Mol Plant Pathol. 2011 May;12(4):365-72. doi: 10.1111/j.1364-3703.2010.00677.x. Epub 2010 Nov 25.
4
Kilbournase, a protease-associated domain subtilase secreted by the fungal corn pathogen Stenocarpella maydis.
Fungal Genet Biol. 2020 Aug;141:103399. doi: 10.1016/j.fgb.2020.103399. Epub 2020 May 6.
6
Crystallographic structure of ChitA, a glycoside hydrolase family 19, plant class IV chitinase from Zea mays.
Protein Sci. 2014 May;23(5):586-93. doi: 10.1002/pro.2437. Epub 2014 Mar 10.
7
Truncation of class IV chitinases from Arabidopsis by secreted fungal proteases.
Mol Plant Pathol. 2012 Dec;13(9):1135-9. doi: 10.1111/j.1364-3703.2012.00805.x. Epub 2012 Apr 18.
8
Recognition of corn defense chitinases by fungal polyglycine hydrolases.
Protein Sci. 2017 Jun;26(6):1214-1223. doi: 10.1002/pro.3175. Epub 2017 Apr 16.

引用本文的文献

1
Crystal structure of a polyglycine hydrolase determined using a RoseTTAFold model.
Acta Crystallogr D Struct Biol. 2023 Feb 1;79(Pt 2):168-176. doi: 10.1107/S2059798323000311. Epub 2023 Feb 6.
2
Functional Characterization of the M36 Metalloprotease FgFly1 in .
J Fungi (Basel). 2022 Jul 12;8(7):726. doi: 10.3390/jof8070726.
4
Use of Dual RNA-seq for Systems Biology Analysis of and Interaction.
Front Microbiol. 2020 Jun 3;11:853. doi: 10.3389/fmicb.2020.00853. eCollection 2020.
5
Primary Structure Analysis of Antifungal Peptides from Cultivated and Wild Cereals.
Plants (Basel). 2018 Sep 12;7(3):74. doi: 10.3390/plants7030074.
6
Recognition of corn defense chitinases by fungal polyglycine hydrolases.
Protein Sci. 2017 Jun;26(6):1214-1223. doi: 10.1002/pro.3175. Epub 2017 Apr 16.
8
Cloning of the Aegiceras corniculatum class I chitinase gene (AcCHI I) and the response of AcCHI I mRNA expression to cadmium stress.
Ecotoxicology. 2015 Oct;24(7-8):1705-13. doi: 10.1007/s10646-015-1502-0. Epub 2015 Jun 5.
10
Crystallographic structure of ChitA, a glycoside hydrolase family 19, plant class IV chitinase from Zea mays.
Protein Sci. 2014 May;23(5):586-93. doi: 10.1002/pro.2437. Epub 2014 Mar 10.

本文引用的文献

2
The B73 maize genome: complexity, diversity, and dynamics.
Science. 2009 Nov 20;326(5956):1112-5. doi: 10.1126/science.1178534.
3
Geographic variation in adaptation at the molecular level: a case study of plant immunity genes.
Evolution. 2008 Dec;62(12):3069-81. doi: 10.1111/j.1558-5646.2008.00511.x. Epub 2008 Sep 11.
4
Tricine-SDS-PAGE.
Nat Protoc. 2006;1(1):16-22. doi: 10.1038/nprot.2006.4.
6
Bacterial elicitation and evasion of plant innate immunity.
Nat Rev Mol Cell Biol. 2006 Aug;7(8):601-11. doi: 10.1038/nrm1984.
7
Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor.
Proc Natl Acad Sci U S A. 2006 Jul 18;103(29):11086-91. doi: 10.1073/pnas.0508882103. Epub 2006 Jul 7.
8
New insights to the function of phytopathogenic bacterial type III effectors in plants.
Annu Rev Plant Biol. 2005;56:509-31. doi: 10.1146/annurev.arplant.56.032604.144218.
10
Comparative evolutionary histories of chitinase genes in the Genus zea and Family poaceae.
Genetics. 2004 Jul;167(3):1331-40. doi: 10.1534/genetics.104.026856.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验