Alfieri R, Bartocci E, Merelli E, Milanesi L
Institute for Biomedical Technologies - CNR, Segrate, Italy.
Biosystems. 2011 Jul;105(1):34-40. doi: 10.1016/j.biosystems.2011.03.002. Epub 2011 Mar 29.
The cell cycle is a complex biological system frequently investigated from a mathematical perspective. In fact, over the past years a huge number of deterministic mathematical models describing the dynamics and the regulation of this process have been proposed. A crucial point concerning the cell cycle modeling is the combination of continuous and discrete dynamics in order to obtain results which are coherent with the biological context. To face with this problem we propose a novel approach to the mathematical modeling of biological processes based on the use of hybrid systems. This new methodology essentially consists in a model reduction (using the modified Prony's method) which allows to define the crucial features of the dynamical system. The final aim is to implement a corresponding hybrid system which preserves the properties of the starting deterministic model. Thus, we implemented a methodology which allows to describe the cellular system by combining continuous behavior with discrete events by using the hybrid automata technology. In this way we try to overcome some drawbacks of the deterministic approach, especially regarding the possibility to introduce new variables during simulation and the associated variation of parameters in a more efficient way than the continuous method can do. We applied this innovative methodology to the reconstruction of a simplified hybrid model concerning one of the crucial mammalian cell cycle control point. In particular, we investigated the role of the transcription factors E2F in the R-point transition. The resulting hybrid model preserve the properties of the deterministic one and it allows the identification of the parameter which controls the transition from the inactive (quiescent) to the active state (R-point transition) after the mitogenic stimulation. At the best of our knowledge no hybrid model for the R-point transition are available in literature.
细胞周期是一个复杂的生物系统,常从数学角度进行研究。事实上,在过去几年中,已经提出了大量描述该过程动态和调控的确定性数学模型。细胞周期建模的一个关键点是连续动力学和离散动力学的结合,以便获得与生物学背景相符的结果。为解决这个问题,我们基于混合系统的使用,提出了一种生物过程数学建模的新方法。这种新方法主要包括模型约简(使用改进的 Prony 方法),它允许定义动态系统的关键特征。最终目标是实现一个相应的混合系统,该系统保留起始确定性模型的属性。因此,我们实现了一种方法,通过使用混合自动机技术将连续行为与离散事件相结合来描述细胞系统。通过这种方式,我们试图克服确定性方法的一些缺点,特别是在模拟过程中引入新变量的可能性以及参数的相关变化,比连续方法更有效。我们将这种创新方法应用于重建一个关于关键哺乳动物细胞周期控制点之一的简化混合模型。特别是,我们研究了转录因子 E2F 在 R 点转换中的作用。所得的混合模型保留了确定性模型的属性,并且它允许识别在有丝分裂原刺激后控制从非活性(静止)状态到活性状态(R 点转换)的参数。据我们所知,文献中没有关于 R 点转换的混合模型。