Alber Mark, Glimm Tilmann, Hentschel H G E, Kazmierczak Bogdan, Zhang Yong-Tao, Zhu Jianfeng, Newman Stuart A
Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556-4618, USA.
Bull Math Biol. 2008 Feb;70(2):460-83. doi: 10.1007/s11538-007-9264-3. Epub 2007 Oct 27.
A recently proposed mathematical model of a "core" set of cellular and molecular interactions present in the developing vertebrate limb was shown to exhibit pattern-forming instabilities and limb skeleton-like patterns under certain restrictive conditions, suggesting that it may authentically represent the underlying embryonic process (Hentschel et al., Proc. R. Soc. B 271, 1713-1722, 2004). The model, an eight-equation system of partial differential equations, incorporates the behavior of mesenchymal cells as "reactors," both participating in the generation of morphogen patterns and changing their state and position in response to them. The full system, which has smooth solutions that exist globally in time, is nonetheless highly complex and difficult to handle analytically or numerically. According to a recent classification of developmental mechanisms (Salazar-Ciudad et al., Development 130, 2027-2037, 2003), the limb model of Hentschel et al. is "morphodynamic," since differentiation of new cell types occurs simultaneously with cell rearrangement. This contrasts with "morphostatic" mechanisms, in which cell identity becomes established independently of cell rearrangement. Under the hypothesis that development of some vertebrate limbs employs the core mechanism in a morphostatic fashion, we derive in an analytically rigorous fashion a pair of equations representing the spatiotemporal evolution of the morphogen fields under the assumption that cell differentiation relaxes faster than the evolution of the overall cell density (i.e., the morphostatic limit of the full system). This simple reaction-diffusion system is unique in having been derived analytically from a substantially more complex system involving multiple morphogens, extracellular matrix deposition, haptotaxis, and cell translocation. We identify regions in the parameter space of the reduced system where Turing-type pattern formation is possible, which we refer to as its "Turing space." Obtained values of the parameters are used in numerical simulations of the reduced system, using a new Galerkin finite element method, in tissue domains with nonstandard geometry. The reduced system exhibits patterns of spots and stripes like those seen in developing limbs, indicating its potential utility in hybrid continuum-discrete stochastic modeling of limb development. Lastly, we discuss the possible role in limb evolution of selection for increasingly morphostatic developmental mechanisms.
最近提出的一个关于发育中的脊椎动物肢体中存在的一组“核心”细胞和分子相互作用的数学模型,在某些限制性条件下显示出模式形成不稳定性和类似肢体骨骼的模式,这表明它可能真实地代表了潜在的胚胎过程(Hentschel等人,《英国皇家学会学报B》271,1713 - 1722,2004)。该模型是一个由八个偏微分方程组成的系统,将间充质细胞的行为视为“反应器”,既参与形态发生素模式的生成,又响应这些模式改变其状态和位置。整个系统具有在时间上全局存在的光滑解,然而却高度复杂,难以进行解析或数值处理。根据最近对发育机制的分类(Salazar - Ciudad等人,《发育》130,2027 - 2037,2003),Hentschel等人的肢体模型是“形态动力学的”,因为新细胞类型的分化与细胞重排同时发生。这与“形态静态 ”机制形成对比,在“形态静态 ”机制中,细胞身份的确定独立于细胞重排。在某些脊椎动物肢体发育以形态静态方式采用核心机制的假设下,我们以解析上严格的方式推导了一对方程,它们表示在细胞分化比整体细胞密度的演化更快松弛的假设下(即整个系统的形态静态极限)形态发生素场的时空演化。这个简单的反应 - 扩散系统的独特之处在于,它是从一个实质上更复杂的系统解析推导出来的,该复杂系统涉及多种形态发生素、细胞外基质沉积、趋触性和细胞易位。我们确定了简化系统参数空间中可能发生图灵型模式形成的区域,我们将其称为“图灵空间”。所获得的参数值用于简化系统的数值模拟,采用一种新的伽辽金有限元方法,在具有非标准几何形状的组织域中进行模拟。简化系统呈现出类似于发育肢体中看到的斑点和条纹模式,表明其在肢体发育的混合连续 - 离散随机建模中的潜在用途。最后,我们讨论了在肢体进化中选择越来越多的形态静态发育机制可能发挥的作用。