Departments of Neurology and Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, United States.
Respir Physiol Neurobiol. 2011 Jul 31;177(2):133-40. doi: 10.1016/j.resp.2011.03.020. Epub 2011 Mar 29.
The integrity of the serotonin (5-HT) system is essential to normal respiratory and thermoregulatory control. Male and female transgenic mice lacking central 5-HT neurons (Lmx1b(f/f/p) mice) show a 50% reduction in the hypercapnic ventilatory response and insufficient heat generation when cooled (Hodges and Richerson, 2008a; Hodges et al., 2008b). Lmx1b(f/f/p) mice also show reduced body temperatures (T(body)) and O(2) consumption [Formula: see text] , and breathe less at rest and during hypoxia and hypercapnia when measured below thermoneutrality (24 °C), suggesting a role for 5-HT neurons in integrating ventilatory, thermal and metabolic control. Here, the hypothesis that Pet-1 null mice, which retain 30% of central 5-HT neurons, will demonstrate similar deficits in temperature and ventilatory control was tested. Pet-1 null mice had fewer medullary tryptophan hydroxylase-immunoreactive (TPH(+)) neurons compared to wild type (WT) mice, particularly in the midline raphé. Female (but not male) Pet-1 null mice had lower baseline ventilation (V(E)), breathing frequency (f), [Formula: see text] and T(body) relative to female WT mice (P < 0.05). In addition, V(E) and [Formula: see text] were decreased in male and female Pet-1 null mice during hypoxia and hypercapnia (P < 0.05), but only male Pet-1 null mice showed a significant deficit in the hypercapnic ventilatory response when expressed as % of control (P < 0.05). Finally, male and female Pet-1 null mice showed significant decreases in T(body) when externally cooled to 4 °C. These data demonstrate that a moderate loss of 5-HT neurons leads to a modest attenuation of mechanisms defending body temperature, and that there are gender differences in the contributions of 5-HT neurons to ventilatory and thermoregulatory control.
5-羟色胺(5-HT)系统的完整性对正常呼吸和体温调节控制至关重要。缺乏中枢 5-HT 神经元的雄性和雌性转基因小鼠(Lmx1b(f/f/p) 小鼠)在高碳酸血症时通气反应降低 50%,在冷却时热量产生不足(Hodges 和 Richerson,2008a;Hodges 等人,2008b)。Lmx1b(f/f/p) 小鼠的体温(T(body))和 O(2)消耗也降低[公式:见正文],在低于体温中性(24°C)时,休息时以及在低氧和高碳酸血症时呼吸减少,表明 5-HT 神经元在整合通气、体温和代谢控制方面发挥作用。在这里,测试了保留 30%中枢 5-HT 神经元的 Pet-1 缺失小鼠在体温和通气控制方面是否表现出类似缺陷的假设。Pet-1 缺失小鼠的中缝背核色氨酸羟化酶免疫反应性(TPH(+))神经元比野生型(WT)小鼠少,尤其是在中线。与雌性 WT 小鼠相比,雌性(但不是雄性)Pet-1 缺失小鼠的基础通气(VE)、呼吸频率(f)、VE/[Formula: see text]和 T(body) 较低(P < 0.05)。此外,在缺氧和高碳酸血症期间,雄性和雌性 Pet-1 缺失小鼠的 VE 和 VE/[Formula: see text]降低(P < 0.05),但只有雄性 Pet-1 缺失小鼠的高碳酸血症通气反应表达为对照的%时表现出明显缺陷(P < 0.05)。最后,雄性和雌性 Pet-1 缺失小鼠在外部冷却至 4°C 时体温显著下降。这些数据表明,5-HT 神经元的适度丧失导致体温防御机制的适度减弱,并且 5-HT 神经元对通气和体温调节控制的贡献存在性别差异。