Department of Physiology and Neurobiology, Dartmouth Medical School, Lebanon, NH 03756, USA.
J Physiol. 2011 Apr 15;589(Pt 8):2055-64. doi: 10.1113/jphysiol.2010.203679. Epub 2011 Feb 28.
Based on previous studies in adult animals, devoid of 5-HT neurones, showing altered thermoregulation in cold stress (4°C) and a reduced ventilatory response to CO₂, we hypothesized that neonatal mice lacking 60-70% of their 5-HT neurones (Pet-1(-/-)) would have: (1) a reduced thermogenic response to a mild drop in ambient temperature (TA), (2) reduced V(E) and heart rate (HR) responses to mild cooling that reflect this reduced thermogenic response, and (3) a reduced ventilatory response to CO₂ after postnatal day 12 (P12), when 5-HT neurones become chemosensitive in vitro. We first determined that a 60-70% loss of 5-HT-positive neurones results in a ~90% loss of 5-HT from the brainstems of Pet-1(-/-) animals. We then subjected Pet-1(-/-) and wild-type (WT) mice (N = 5) to mild environmental cooling (T(A) = 29°C) at ~P12. T(A) was initially held at 34°C for ~20 min, reduced to 29°C over 15 min and held for an additional 10 min at steady state, and then returned to 34°C. From 34°C to 29°C, there was a robust increase in V(O₂) in P12WT, but not Pet-1(-/-) animals (68±19.9% versus -16±8%, respectively; P = 0.002). On average, body temperature (T(B)) dropped 1.1°C more in Pet-1(-/-) compared to WT animals (P = 0.03). HR remained unchanged in WT but dropped 22±2.3% in Pet-1(-/-) animals (P = 0.01). Genotype had no effect on tail temperature (T(T)), either at 34°C or 29°C. After cooling, values for V(O₂) and HR of Pet-1(-/-) animals were no different to values predicted by Q₁₀ effects alone, while values of WT animals were greater than predicted. V(E) increased in WT with cooling, while it decreased in Pet-1(-/-) animals (P = 0.002). Still, Pet-1(-/-) animals hyperventilated relative to WT (increased V(E)/V(O₂)) irrespective of T(A) (P = 0.002). As tested in a separate group of pups, there was no difference in the ventilatory response to CO₂ between WT and Pet-1(-/-) animals, either at P5 or P15. We conclude that during neonatal life in mouse pups: (1) brainstem 5-HT is critical for the thermogenic response to a mild drop in environmental temperature probably via a sympathetically-mediated increase in brown fat metabolism; (2) reduced thermogenesis probably contributes to the reduced HR and V(O₂) observed with 5-HT deficiency; and (3) the presence of some brainstem 5-HT is sufficient for an appropriate ventilatory response to hypercapnia up until P15. Infants with reduced brainstem 5-HT could be prone to cardiovascular and respiratory abnormalities resulting from compromised thermogenesis.
基于先前在成年动物中的研究,缺乏 5-羟色胺神经元的动物在冷应激(4°C)下表现出体温调节改变和对 CO₂的通气反应降低,我们假设缺乏 60-70%的 5-羟色胺神经元的新生小鼠(Pet-1(-/-))将具有:(1) 对环境温度(TA)的轻微下降的产热反应降低,(2) 对这种产热反应降低的通气和心率(HR)反应降低,以及(3)在出生后第 12 天(P12)之后对 CO₂的通气反应降低,此时 5-羟色胺神经元在体外变得对化学敏感。我们首先确定 60-70%的 5-羟色胺阳性神经元丢失会导致 Pet-1(-/-)动物的脑干中 5-羟色胺丢失约 90%。然后,我们将 Pet-1(-/-)和野生型(WT)小鼠(N = 5)暴露于温和的环境冷却(T(A) = 29°C)中,大约在 P12 时。T(A)最初在 34°C保持约 20 分钟,在 15 分钟内降至 29°C,并在稳定状态下再保持 10 分钟,然后再返回 34°C。从 34°C到 29°C,P12WT 动物的 V(O₂)有明显增加,但 Pet-1(-/-)动物则没有(分别为 68±19.9%和-16±8%;P = 0.002)。平均而言,与 WT 动物相比,Pet-1(-/-)动物的体温(T(B))下降了 1.1°C(P = 0.03)。WT 动物的 HR 保持不变,但 Pet-1(-/-)动物的 HR 下降了 22±2.3%(P = 0.01)。基因型对 34°C 或 29°C时的尾巴温度(T(T))没有影响。冷却后,Pet-1(-/-)动物的 V(O₂)和 HR 值与单独 Q₁₀ 效应预测的值没有差异,而 WT 动物的值则大于预测值。WT 动物的 V(E)随着冷却而增加,而 Pet-1(-/-)动物的 V(E)则减少(P = 0.002)。尽管如此,与 WT 相比,Pet-1(-/-)动物仍过度通气(增加了 V(E)/V(O₂)),无论 T(A)如何(P = 0.002)。在另一组幼鼠中进行的测试表明,WT 和 Pet-1(-/-)动物在 P5 或 P15 时对 CO₂的通气反应没有差异。我们得出的结论是,在小鼠幼仔的新生儿期:(1) 脑干中的 5-羟色胺对于轻度环境温度下降的产热反应是至关重要的,可能是通过增加棕色脂肪代谢的交感神经介导;(2) 产热减少可能导致 5-羟色胺缺乏时观察到的 HR 和 V(O₂)降低;以及 (3) 存在一些脑干 5-羟色胺对于 P15 之前对高碳酸血症的适当通气反应是足够的。脑干 5-羟色胺减少的婴儿可能容易出现因产热受损导致的心血管和呼吸异常。