Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.
J Biol Chem. 2011 May 20;286(20):17512-20. doi: 10.1074/jbc.M110.217364. Epub 2011 Mar 28.
Collagen triple helices fold slowly and inefficiently, often requiring adjacent globular domains to assist this process. In the Streptococcus pyogenes collagen-like protein Scl2, a V domain predicted to be largely α-helical, occurs N-terminal to the collagen triple helix (CL). Here, we replace this natural trimerization domain with a de novo designed, hyperstable, parallel, three-stranded, α-helical coiled coil (CC), either at the N terminus (CC-CL) or the C terminus (CL-CC) of the collagen domain. CD spectra of the constructs are consistent with additivity of independently and fully folded CC and CL domains, and the proteins retain their distinctive thermal stabilities, CL at ∼37 °C and CC at >90 °C. Heating the hybrid proteins to 50 °C unfolds CL, leaving CC intact, and upon cooling, the rate of CL refolding is somewhat faster for CL-CC than for CC-CL. A construct with coiled coils on both ends, CC-CL-CC, retains the ∼37 °C thermal stability for CL but shows less triple helix at low temperature and less denaturation at 50 °C. Most strikingly however, in CC-CL-CC, the CL refolds slower than in either CC-CL or CL-CC by almost two orders of magnitude. We propose that a single CC promotes folding of the CL domain via nucleation and in-register growth from one end, whereas initiation and growth from both ends in CC-CL-CC results in mismatched registers that frustrate folding. Bioinformatics analysis of natural collagens lends support to this because, where present, there is generally only one coiled-coil domain close to the triple helix, and it is nearly always N-terminal to the collagen repeat.
胶原蛋白三螺旋折叠缓慢且效率低下,通常需要相邻的球状结构域来辅助这一过程。在酿脓链球菌胶原样蛋白 Scl2 中,一个预测主要为α-螺旋的 V 结构域位于胶原蛋白三螺旋(CL)的 N 端。在这里,我们用从头设计的超稳定、平行的三股α-螺旋卷曲螺旋(CC)取代了这个天然的三聚体化结构域,该结构域位于胶原结构域的 N 端(CC-CL)或 C 端(CL-CC)。构建体的 CD 光谱与独立且完全折叠的 CC 和 CL 结构域的加和性一致,并且这些蛋白质保留了它们独特的热稳定性,CL 约为 37°C,CC 大于 90°C。将杂交蛋白加热至 50°C 可使 CL 解折叠,而 CC 保持完整,当冷却时,CL-CC 的 CL 复性速度比 CC-CL 略快。在两端都有卷曲螺旋的构建体 CC-CL-CC 保持了 CL 的约 37°C 热稳定性,但在低温下的三螺旋含量较少,在 50°C 时的变性程度较低。然而,最引人注目的是,在 CC-CL-CC 中,CL 的复性速度比 CC-CL 或 CL-CC 慢近两个数量级。我们提出,单个 CC 通过从一端的成核和对齐生长来促进 CL 结构域的折叠,而在 CC-CL-CC 中从两端开始的引发和生长导致不匹配的折叠。对天然胶原的生物信息学分析支持了这一点,因为在存在卷曲螺旋结构域的情况下,通常只有一个卷曲螺旋结构域靠近三螺旋,而且它几乎总是位于胶原重复序列的 N 端。