Suppr超能文献

黏连蛋白介导调节哺乳动物β-珠蛋白表达的染色质相互作用。

Cohesin mediates chromatin interactions that regulate mammalian β-globin expression.

机构信息

Department of Biological Chemistry, School of Medicine, University of California, Irvine, California 92697-1700, USA.

出版信息

J Biol Chem. 2011 May 20;286(20):17870-8. doi: 10.1074/jbc.M110.207365. Epub 2011 Mar 29.

Abstract

The β-globin locus undergoes dynamic chromatin interaction changes in differentiating erythroid cells that are thought to be important for proper globin gene expression. However, the underlying mechanisms are unclear. The CCCTC-binding factor, CTCF, binds to the insulator elements at the 5' and 3' boundaries of the locus, but these sites were shown to be dispensable for globin gene activation. We found that, upon induction of differentiation, cohesin and the cohesin loading factor Nipped-B-like (Nipbl) bind to the locus control region (LCR) at the CTCF insulator and distal enhancer regions as well as at the specific target globin gene that undergoes activation upon differentiation. Nipbl-dependent cohesin binding is critical for long-range chromatin interactions, both between the CTCF insulator elements and between the LCR distal enhancer and the target gene. We show that the latter interaction is important for globin gene expression in vivo and in vitro. Furthermore, the results indicate that such cohesin-mediated chromatin interactions associated with gene regulation are sensitive to the partial reduction of Nipbl caused by heterozygous mutation. This provides the first direct evidence that Nipbl haploinsufficiency affects cohesin-mediated chromatin interactions and gene expression. Our results reveal that dynamic Nipbl/cohesin binding is critical for developmental chromatin organization and the gene activation function of the LCR in mammalian cells.

摘要

β-珠蛋白基因座在分化的红细胞中经历动态染色质相互作用变化,这些变化被认为对正确的珠蛋白基因表达很重要。然而,其潜在的机制尚不清楚。CCCTC 结合因子(CTCF)结合到基因座的 5'和 3'边界的绝缘子元件上,但这些位点对于珠蛋白基因的激活是可有可无的。我们发现,在诱导分化时,黏着蛋白和黏着蛋白加载因子 Nipped-B 样(Nipbl)结合到 LCR 上的绝缘子和远端增强子区域以及特定的靶珠蛋白基因上,这些基因在分化时会被激活。Nipbl 依赖性黏着蛋白结合对于长距离染色质相互作用至关重要,包括 CTCF 绝缘子元件之间以及 LCR 远端增强子和靶基因之间的相互作用。我们表明,后者的相互作用对于体内和体外的珠蛋白基因表达很重要。此外,结果表明,这种与基因调控相关的黏着蛋白介导的染色质相互作用对由杂合突变引起的 Nipbl 部分减少敏感。这首次直接证明了 Nipbl 杂合不足会影响黏着蛋白介导的染色质相互作用和基因表达。我们的结果表明,动态的 Nipbl/黏着蛋白结合对于哺乳动物细胞中发育性染色质组织和 LCR 的基因激活功能至关重要。

相似文献

1
Cohesin mediates chromatin interactions that regulate mammalian β-globin expression.
J Biol Chem. 2011 May 20;286(20):17870-8. doi: 10.1074/jbc.M110.207365. Epub 2011 Mar 29.
2
Cell type specificity of chromatin organization mediated by CTCF and cohesin.
Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3651-6. doi: 10.1073/pnas.0912087107. Epub 2010 Feb 2.
4
Tissue-specific CTCF-cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo.
Nat Cell Biol. 2017 Aug;19(8):952-961. doi: 10.1038/ncb3573. Epub 2017 Jul 24.
6
A cohesin-independent role for NIPBL at promoters provides insights in CdLS.
PLoS Genet. 2014 Feb 13;10(2):e1004153. doi: 10.1371/journal.pgen.1004153. eCollection 2014 Feb.
7
CTCF: the protein, the binding partners, the binding sites and their chromatin loops.
Philos Trans R Soc Lond B Biol Sci. 2013 May 6;368(1620):20120369. doi: 10.1098/rstb.2012.0369. Print 2013.
8
Genome-wide studies of CCCTC-binding factor (CTCF) and cohesin provide insight into chromatin structure and regulation.
J Biol Chem. 2012 Sep 7;287(37):30906-13. doi: 10.1074/jbc.R111.324962. Epub 2012 Sep 5.
10
Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl.
Nature. 2017 Apr 27;544(7651):503-507. doi: 10.1038/nature22063. Epub 2017 Apr 19.

引用本文的文献

1
The Functions and Mechanisms of the Cohesin Complex in Regulating the Fate Determinations of Stem Cells.
Research (Wash D C). 2025 Jul 10;8:0757. doi: 10.34133/research.0757. eCollection 2025.
2
Active regulatory elements recruit cohesin to establish cell specific chromatin domains.
Sci Rep. 2025 Apr 6;15(1):11780. doi: 10.1038/s41598-025-96248-4.
6
Gastrulation-stage gene expression in mouse embryos foreshadows the development of syndromic birth defects.
Sci Adv. 2024 Mar 22;10(12):eadl4239. doi: 10.1126/sciadv.adl4239. Epub 2024 Mar 20.
9
Transcription Pause and Escape in Neurodevelopmental Disorders.
Front Neurosci. 2022 May 9;16:846272. doi: 10.3389/fnins.2022.846272. eCollection 2022.
10
BETting on a Transcriptional Deficit as the Main Cause for Cornelia de Lange Syndrome.
Front Mol Biosci. 2021 Jul 27;8:709232. doi: 10.3389/fmolb.2021.709232. eCollection 2021.

本文引用的文献

1
Mediator and cohesin connect gene expression and chromatin architecture.
Nature. 2010 Sep 23;467(7314):430-5. doi: 10.1038/nature09380. Epub 2010 Aug 18.
2
Condensin and cohesin complexity: the expanding repertoire of functions.
Nat Rev Genet. 2010 Jun;11(6):391-404. doi: 10.1038/nrg2794. Epub 2010 May 5.
3
A CTCF-independent role for cohesin in tissue-specific transcription.
Genome Res. 2010 May;20(5):578-88. doi: 10.1101/gr.100479.109. Epub 2010 Mar 10.
4
Cell type specificity of chromatin organization mediated by CTCF and cohesin.
Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3651-6. doi: 10.1073/pnas.0912087107. Epub 2010 Feb 2.
5
Enhancers: the abundance and function of regulatory sequences beyond promoters.
Dev Biol. 2010 Mar 15;339(2):250-7. doi: 10.1016/j.ydbio.2009.11.035. Epub 2009 Dec 16.
6
Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus.
PLoS Genet. 2009 Nov;5(11):e1000739. doi: 10.1371/journal.pgen.1000739. Epub 2009 Nov 26.
7
A wave of nascent transcription on activated human genes.
Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18357-61. doi: 10.1073/pnas.0902573106. Epub 2009 Oct 13.
9
Cornelia de Lange syndrome, cohesin, and beyond.
Clin Genet. 2009 Oct;76(4):303-14. doi: 10.1111/j.1399-0004.2009.01271.x.
10
Multiple organ system defects and transcriptional dysregulation in the Nipbl(+/-) mouse, a model of Cornelia de Lange Syndrome.
PLoS Genet. 2009 Sep;5(9):e1000650. doi: 10.1371/journal.pgen.1000650. Epub 2009 Sep 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验