Suppr超能文献

RKTR 基序中的单个取代会损害激酶活性,但会促进 RAF 激酶的二聚化。

Single substitution within the RKTR motif impairs kinase activity but promotes dimerization of RAF kinase.

机构信息

Theodor-Boveri Institute of Bioscience, Department of Microbiology, University of Wuerzburg, Wuerzburg, Germany.

出版信息

J Biol Chem. 2011 May 6;286(18):16491-503. doi: 10.1074/jbc.M110.194167. Epub 2011 Mar 18.

Abstract

The serine/threonine kinase RAF is a central component of the MAPK cascade. Regulation of RAF activity is highly complex and involves recruitment to membranes and association with Ras and scaffold proteins as well as multiple phosphorylation and dephosphorylation events. Previously, we identified by molecular modeling an interaction between the N-region and the RKTR motif of the kinase domain in RAF and assigned a new function to this tetrapeptide segment. Here we found that a single substitution of each basic residue within the RKTR motif inhibited catalytic activity of all three RAF isoforms. However, the inhibition and phosphorylation pattern of C-RAF and A-RAF differed from B-RAF. Furthermore, substitution of the first arginine led to hyperphosphorylation and accumulation of A-RAF and C-RAF in plasma membrane fraction, indicating that this residue interferes with the recycling process of A-RAF and C-RAF but not B-RAF. In contrast, all RAF isoforms behave similarly with respect to the RKTR motif-dependent dimerization. The exchange of the second arginine led to exceedingly increased dimerization as long as one of the protomers was not mutated, suggesting that substitution of this residue with alanine may result in similar a structural rearrangement of the RAF kinase domain, as has been found for the C-RAF kinase domain co-crystallized with a dimerization-stabilizing RAF inhibitor. In summary, we provide evidence that each of the basic residues within the RKTR motif is indispensable for correct RAF function.

摘要

丝氨酸/苏氨酸激酶 RAF 是 MAPK 级联反应的核心组成部分。RAF 活性的调节非常复杂,涉及到向膜的募集以及与 Ras 和支架蛋白的结合,以及多个磷酸化和去磷酸化事件。以前,我们通过分子建模鉴定 RAF 激酶结构域的 N 区域和 RKTR 基序之间的相互作用,并为该四肽段分配了新的功能。在这里,我们发现 RKTR 基序中的每个碱性残基的单一取代均抑制了所有三种 RAF 同工型的催化活性。然而,C-RAF 和 A-RAF 的抑制和磷酸化模式与 B-RAF 不同。此外,第一个精氨酸的取代导致 A-RAF 和 C-RAF 在质膜部分的过度磷酸化和积累,表明该残基干扰了 A-RAF 和 C-RAF 的回收过程,但不干扰 B-RAF。相比之下,所有 RAF 同工型在 RKTR 基序依赖性二聚化方面表现相似。只要一个原聚体没有突变,第二个精氨酸的交换就会导致极其增加的二聚化,这表明用丙氨酸取代该残基可能导致 RAF 激酶结构域的类似结构重排,正如与二聚化稳定 RAF 抑制剂共结晶的 C-RAF 激酶结构域所发现的那样。总之,我们提供的证据表明,RKTR 基序中的每个碱性残基对于 RAF 功能的正确发挥都是不可或缺的。

相似文献

1
Single substitution within the RKTR motif impairs kinase activity but promotes dimerization of RAF kinase.
J Biol Chem. 2011 May 6;286(18):16491-503. doi: 10.1074/jbc.M110.194167. Epub 2011 Mar 18.
2
Three distinct regions of cRaf kinase domain interact with membrane.
Sci Rep. 2019 Feb 14;9(1):2057. doi: 10.1038/s41598-019-38770-w.
4
Effects of Raf dimerization and its inhibition on normal and disease-associated Raf signaling.
Mol Cell. 2013 Feb 21;49(4):751-8. doi: 10.1016/j.molcel.2012.12.018. Epub 2013 Jan 24.
5
Negative regulation of Raf-1 by phosphorylation of serine 621.
Mol Cell Biol. 1996 Oct;16(10):5409-18. doi: 10.1128/MCB.16.10.5409.
7
RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth.
Nature. 2010 Mar 18;464(7287):431-5. doi: 10.1038/nature08833. Epub 2010 Feb 3.
8
Diacylglycerol kinase eta augments C-Raf activity and B-Raf/C-Raf heterodimerization.
J Biol Chem. 2009 Oct 23;284(43):29559-70. doi: 10.1074/jbc.M109.043604. Epub 2009 Aug 26.
9
Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14-3-3 interactions.
Oncogene. 2001 Jul 5;20(30):3949-58. doi: 10.1038/sj.onc.1204526.
10
Phosphorylation of RAF Kinase Dimers Drives Conformational Changes that Facilitate Transactivation.
Angew Chem Int Ed Engl. 2016 Jan 18;55(3):983-6. doi: 10.1002/anie.201509272. Epub 2015 Dec 8.

引用本文的文献

1
Insight into molecular basis and dynamics of full-length CRaf kinase in cellular signaling mechanisms.
Biophys J. 2024 Aug 20;123(16):2623-2637. doi: 10.1016/j.bpj.2024.06.028. Epub 2024 Jun 29.
2
Novel RAF-directed approaches to overcome current clinical limits and block the RAS/RAF node.
Mol Oncol. 2024 Jun;18(6):1355-1377. doi: 10.1002/1878-0261.13605. Epub 2024 Feb 16.
3
Targeting CRAF kinase in anti-cancer therapy: progress and opportunities.
Mol Cancer. 2023 Dec 18;22(1):208. doi: 10.1186/s12943-023-01903-x.
4
Wild-type C-Raf gene dosage and dimerization drive prostate cancer metastasis.
iScience. 2023 Nov 17;26(12):108480. doi: 10.1016/j.isci.2023.108480. eCollection 2023 Dec 15.
5
[Research Progress of BRAF Fusion in Non-small Cell Lung Cancer].
Zhongguo Fei Ai Za Zhi. 2023 Oct 20;26(10):782-788. doi: 10.3779/j.issn.1009-3419.2023.101.28.
6
RAS-independent ERK activation by constitutively active KSR3 in non-chordate metazoa.
Nat Commun. 2023 Jul 5;14(1):3970. doi: 10.1038/s41467-023-39606-y.
7
A Structure is Worth a Thousand Words: New Insights for RAS and RAF Regulation.
Cancer Discov. 2022 Apr 1;12(4):899-912. doi: 10.1158/2159-8290.CD-21-1494.
8
Inhibition of RAF dimers: it takes two to tango.
Biochem Soc Trans. 2021 Feb 26;49(1):237-251. doi: 10.1042/BST20200485.
9
The MAPK and AMPK signalings: interplay and implication in targeted cancer therapy.
J Hematol Oncol. 2020 Aug 17;13(1):113. doi: 10.1186/s13045-020-00949-4.
10
RAF kinase dimerization: implications for drug discovery and clinical outcomes.
Oncogene. 2020 May;39(21):4155-4169. doi: 10.1038/s41388-020-1263-y. Epub 2020 Apr 8.

本文引用的文献

1
RAF protein-serine/threonine kinases: structure and regulation.
Biochem Biophys Res Commun. 2010 Aug 27;399(3):313-7. doi: 10.1016/j.bbrc.2010.07.092. Epub 2010 Jul 30.
2
The raf inhibitor paradox: unexpected consequences of targeted drugs.
Cancer Cell. 2010 Mar 16;17(3):221-3. doi: 10.1016/j.ccr.2010.02.029.
3
RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF.
Nature. 2010 Mar 18;464(7287):427-30. doi: 10.1038/nature08902.
4
Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF.
Cell. 2010 Jan 22;140(2):209-21. doi: 10.1016/j.cell.2009.12.040.
5
RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth.
Nature. 2010 Mar 18;464(7287):431-5. doi: 10.1038/nature08833. Epub 2010 Feb 3.
6
Impact of feedback phosphorylation and Raf heterodimerization on normal and mutant B-Raf signaling.
Mol Cell Biol. 2010 Feb;30(3):806-19. doi: 10.1128/MCB.00569-09. Epub 2009 Nov 23.
7
A dimerization-dependent mechanism drives RAF catalytic activation.
Nature. 2009 Sep 24;461(7263):542-5. doi: 10.1038/nature08314. Epub 2009 Sep 2.
9
A-RAF kinase functions in ARF6 regulated endocytic membrane traffic.
PLoS One. 2009;4(2):e4647. doi: 10.1371/journal.pone.0004647. Epub 2009 Feb 27.
10
Positive regulation of A-RAF by phosphorylation of isoform-specific hinge segment and identification of novel phosphorylation sites.
J Biol Chem. 2008 Oct 3;283(40):27239-54. doi: 10.1074/jbc.M801782200. Epub 2008 Jul 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验