Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA.
J Biol Chem. 2011 Jun 3;286(22):19417-21. doi: 10.1074/jbc.M111.229344. Epub 2011 Mar 28.
The molybdenum-dependent nitrogenase catalyzes the multi-electron reduction of protons and N(2) to yield H(2) and 2NH(3). It also catalyzes the reduction of a number of non-physiological doubly and triply bonded small molecules (e.g. C(2)H(2), N(2)O). Carbon monoxide (CO) is not reduced by the wild-type molybdenum nitrogenase but instead inhibits the reduction of all substrates catalyzed by nitrogenase except protons. Here, we report that when the nitrogenase MoFe protein α-Val(70) residue is substituted by alanine or glycine, the resulting variant proteins will catalyze the reduction and coupling of CO to form methane (CH(4)), ethane (C(2)H(6)), ethylene (C(2)H(4)), propene (C(3)H(6)), and propane (C(3)H(8)). The rates and ratios of hydrocarbon production from CO can be adjusted by changing the flux of electrons through nitrogenase, by substitution of other amino acids located near the FeMo-cofactor, or by changing the partial pressure of CO. Increasing the partial pressure of CO shifted the product ratio in favor of the longer chain alkanes and alkenes. The implications of these findings in understanding the nitrogenase mechanism and the relationship to Fischer-Tropsch production of hydrocarbons from CO are discussed.
钼依赖型氮酶催化质子和 N(2)的多电子还原,生成 H(2)和 2NH(3)。它还催化一些非生理的双重和三重键合的小分子(如 C(2)H(2)、N(2)O)的还原。一氧化碳(CO)不会被野生型钼氮酶还原,而是抑制氮酶除质子以外的所有底物的还原。在这里,我们报告说,当氮酶 MoFe 蛋白的α-Val(70)残基被丙氨酸或甘氨酸取代时,产生的变体蛋白将催化 CO 的还原和偶联,形成甲烷(CH(4))、乙烷(C(2)H(6))、乙烯(C(2)H(4))、丙烯(C(3)H(6))和丙烷(C(3)H(8))。通过改变氮酶通过的电子通量、取代位于 FeMo 辅因子附近的其他氨基酸或改变 CO 的分压,可以调节从 CO 产生烃的速率和比例。增加 CO 的分压有利于更长链烷烃和烯烃的产物比例。讨论了这些发现对理解氮酶机制以及与 CO 费托合成烃的关系的意义。