Suppr超能文献

全长逆转录病毒整合酶单体和二聚体的结构,通过小角度 X 射线散射和化学交联揭示。

Architecture of a full-length retroviral integrase monomer and dimer, revealed by small angle X-ray scattering and chemical cross-linking.

机构信息

Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA.

出版信息

J Biol Chem. 2011 May 13;286(19):17047-59. doi: 10.1074/jbc.M110.212571. Epub 2011 Mar 15.

Abstract

We determined the size and shape of full-length avian sarcoma virus (ASV) integrase (IN) monomers and dimers in solution using small angle x-ray scattering. The low resolution data obtained establish constraints for the relative arrangements of the three component domains in both forms. Domain organization within the small angle x-ray envelopes was determined by combining available atomic resolution data for individual domains with results from cross-linking coupled with mass spectrometry. The full-length dimer architecture so revealed is unequivocally different from that proposed from x-ray crystallographic analyses of two-domain fragments, in which interactions between the catalytic core domains play a prominent role. Core-core interactions are detected only in cross-linked IN tetramers and are required for concerted integration. The solution dimer is stabilized by C-terminal domain (CTD-CTD) interactions and by interactions of the N-terminal domain in one subunit with the core and CTD in the second subunit. These results suggest a pathway for formation of functional IN-DNA complexes that has not previously been considered and possible strategies for preventing such assembly.

摘要

我们使用小角 X 射线散射技术确定了全长禽肉瘤病毒 (ASV) 整合酶 (IN) 单体和二聚体在溶液中的大小和形状。获得的低分辨率数据为两种形式中三个组成域的相对排列建立了约束。通过将单个结构域的可用原子分辨率数据与交联结合质谱的结果相结合,确定了小角 X 射线包络内的结构域组织。如此揭示的全长二聚体结构与通过对两个结构域片段的 X 射线晶体学分析提出的结构完全不同,在这种结构中,催化核心结构域之间的相互作用起着突出的作用。只有在交联 IN 四聚体中才检测到核心-核心相互作用,并且需要协同整合。溶液中二聚体通过 C 末端结构域(CTD-CTD)相互作用和一个亚基中的 N 末端结构域与第二个亚基中的核心和 CTD 的相互作用得到稳定。这些结果表明了一种以前未被考虑的形成功能性 IN-DNA 复合物的途径,以及可能的防止这种组装的策略。

相似文献

2
The conformational feasibility for the formation of reaching dimer in ASV and HIV integrase: a molecular dynamics study.
J Biomol Struct Dyn. 2017 Dec;35(16):3469-3485. doi: 10.1080/07391102.2016.1257955. Epub 2016 Nov 28.
3
Architecture and assembly of HIV integrase multimers in the absence of DNA substrates.
J Biol Chem. 2013 Mar 8;288(10):7373-86. doi: 10.1074/jbc.M112.434431. Epub 2013 Jan 14.
4
Crystal structure of an active two-domain derivative of Rous sarcoma virus integrase.
J Mol Biol. 2000 Feb 18;296(2):535-48. doi: 10.1006/jmbi.1999.3463.
5
Localization of ASV integrase-DNA contacts by site-directed crosslinking and their structural analysis.
PLoS One. 2011;6(12):e27751. doi: 10.1371/journal.pone.0027751. Epub 2011 Dec 1.
6
C-Terminal Domain of Integrase Binds between the Two Active Sites.
J Chem Theory Comput. 2015 Sep 8;11(9):4500-11. doi: 10.1021/ct501125r. Epub 2015 Aug 6.
8
Structural dynamics of full-length retroviral integrase: a molecular dynamics analysis.
J Biomol Struct Dyn. 2012;29(6):659-70. doi: 10.1080/07391102.2011.672630.
9
Ubiquitination of non-lysine residues in the retroviral integrase.
Biochem Biophys Res Commun. 2017 Dec 9;494(1-2):57-62. doi: 10.1016/j.bbrc.2017.10.086. Epub 2017 Oct 18.

引用本文的文献

1
Cryo-EM structure of the Rous sarcoma virus octameric cleaved synaptic complex intasome.
Commun Biol. 2021 Mar 12;4(1):330. doi: 10.1038/s42003-021-01855-2.
2
The Ebola Viral Protein 35 N-Terminus Is a Parallel Tetramer.
Biochemistry. 2019 Feb 12;58(6):657-664. doi: 10.1021/acs.biochem.8b01154. Epub 2019 Jan 10.
4
Successes and challenges with retroviral enzymes.
Postepy Biochem. 2016;62(3):280-285.
5
The conformational feasibility for the formation of reaching dimer in ASV and HIV integrase: a molecular dynamics study.
J Biomol Struct Dyn. 2017 Dec;35(16):3469-3485. doi: 10.1080/07391102.2016.1257955. Epub 2016 Nov 28.
6
Retroviral Integrase: Then and Now.
Annu Rev Virol. 2015 Nov;2(1):241-64. doi: 10.1146/annurev-virology-100114-055043.
7
Crystal structure of the Rous sarcoma virus intasome.
Nature. 2016 Feb 18;530(7590):362-6. doi: 10.1038/nature16950.
8
Multifunctional facets of retrovirus integrase.
World J Biol Chem. 2015 Aug 26;6(3):83-94. doi: 10.4331/wjbc.v6.i3.83.
9
Structural and sequencing analysis of local target DNA recognition by MLV integrase.
Nucleic Acids Res. 2015 Jun 23;43(11):5647-63. doi: 10.1093/nar/gkv410. Epub 2015 May 12.
10
Retroviral DNA Transposition: Themes and Variations.
Microbiol Spectr. 2014 Dec;2(5):MDNA300052014. doi: 10.1128/microbiolspec.MDNA3-0005-2014.

本文引用的文献

2
The mechanism of retroviral integration from X-ray structures of its key intermediates.
Nature. 2010 Nov 11;468(7321):326-9. doi: 10.1038/nature09517.
3
Solution structures of DNA-bound gyrase.
Nucleic Acids Res. 2011 Jan;39(2):755-66. doi: 10.1093/nar/gkq799. Epub 2010 Sep 24.
4
Protein binding hot spots and the residue-residue pairing preference: a water exclusion perspective.
BMC Bioinformatics. 2010 May 12;11:244. doi: 10.1186/1471-2105-11-244.
5
The HADDOCK web server for data-driven biomolecular docking.
Nat Protoc. 2010 May;5(5):883-97. doi: 10.1038/nprot.2010.32. Epub 2010 Apr 15.
6
Structural properties of HIV integrase. Lens epithelium-derived growth factor oligomers.
J Biol Chem. 2010 Jun 25;285(26):20303-15. doi: 10.1074/jbc.M110.114413. Epub 2010 Apr 20.
7
Retroviral intasome assembly and inhibition of DNA strand transfer.
Nature. 2010 Mar 11;464(7286):232-6. doi: 10.1038/nature08784. Epub 2010 Jan 31.
8
An allosteric mechanism for inhibiting HIV-1 integrase with a small molecule.
Mol Pharmacol. 2009 Oct;76(4):824-32. doi: 10.1124/mol.109.058883. Epub 2009 Jul 28.
9
Piecing together the structure of retroviral integrase, an important target in AIDS therapy.
FEBS J. 2009 Jun;276(11):2926-46. doi: 10.1111/j.1742-4658.2009.07009.x. Epub 2009 Apr 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验