Biolinx LLC, Alburgh, Vermont, United States of America.
PLoS One. 2011;6(12):e27751. doi: 10.1371/journal.pone.0027751. Epub 2011 Dec 1.
We applied crosslinking techniques as a first step in preparation of stable avian sarcoma virus (ASV) integrase (IN)-DNA complexes for crystallographic investigations. These results were then compared with the crystal structures of the prototype foamy virus (PFV) intasome and with published data for other retroviral IN proteins.
METHODOLOGY/RESULTS: Photoaffinity crosslinking and site-directed chemical crosslinking were used to localize the sites of contacts with DNA substrates on the surface of ASV IN. Sulfhydryl groups of cysteines engineered into ASV IN and amino-modified nucleotides in DNA substrates were used for attachment of photocrosslinkers. Analysis of photocrosslinking data revealed several specific DNA-protein contacts. To confirm contact sites, thiol-modified nucleotides were introduced into oligo-DNA substrates at suggested points of contact and chemically crosslinked to the cysteines via formation of disulfide bridges. Cysteines incorporated in positions 124 and 146 in the ASV IN core domain were shown to interact directly with host and viral portions of the Y-mer DNA substrate, respectively. Crosslinking of an R244C ASV IN derivative identified contacts at positions 11 and 12 on both strands of viral DNA. The most efficient disulfide crosslinking was observed for complexes of the ASV IN E157C and D64C derivatives with linear viral DNA substrate carrying a thiol-modified scissile phosphate.
Analysis of our crosslinking results as well as published results of retroviral IN protein from other laboratories shows good agreement with the structure of PFV IN and derived ASV, HIV, and MuLV models for the core domain, but only partial agreement for the N- and C-terminal domains. These differences might be explained by structural variations and evolutionary selection for residues at alternate positions to perform analogous functions, and by methodological differences: i.e., a static picture of a particular assembly from crystallography vs. a variety of interactions that might occur during formation of functional IN complexes in solution.
我们应用交联技术作为制备稳定禽肉瘤病毒(ASV)整合酶(IN)-DNA 复合物的第一步,以便进行晶体学研究。然后,将这些结果与原型泡沫病毒(PFV)整合酶三聚体的晶体结构以及其他逆转录病毒 IN 蛋白的已发表数据进行比较。
方法/结果:光亲和交联和定点化学交联用于定位 ASV IN 表面与 DNA 底物接触的部位。将工程改造到 ASV IN 中的半胱氨酸巯基和 DNA 底物中的氨基修饰核苷酸用于附着光交联剂。光交联数据的分析揭示了几个特定的 DNA-蛋白接触点。为了确认接触位点,将巯基修饰的核苷酸引入到寡核苷酸 DNA 底物中建议的接触点,并通过形成二硫键将其与半胱氨酸化学交联。ASV IN 核心结构域中的 124 位和 146 位的半胱氨酸被证明分别与 Y 型 DNA 底物的宿主和病毒部分直接相互作用。对 R244C ASV IN 衍生物的交联鉴定了病毒 DNA 两条链上 11 位和 12 位的接触点。ASV IN E157C 和 D64C 衍生物与携带巯基修饰的断裂磷酸的线性病毒 DNA 底物的复合物观察到最有效的二硫键交联。
对我们的交联结果的分析以及来自其他实验室的逆转录病毒 IN 蛋白的已发表结果与 PFV IN 的结构以及衍生的 ASV、HIV 和 MuLV 核心结构域模型非常吻合,但与 N 和 C 末端结构域只有部分吻合。这些差异可能是由于结构变化和进化选择导致替代位置的残基执行类似的功能,以及由于方法学差异,即晶体学中特定组装的静态图像与溶液中功能性 IN 复合物形成过程中可能发生的各种相互作用。