Suppr超能文献

在原代人巨噬细胞中发现大量非典型的 dUTP,这促使 HIV-1 逆转录酶频繁将其掺入。

Abundant non-canonical dUTP found in primary human macrophages drives its frequent incorporation by HIV-1 reverse transcriptase.

机构信息

Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA.

出版信息

J Biol Chem. 2011 Jul 15;286(28):25047-55. doi: 10.1074/jbc.M111.234047. Epub 2011 Mar 31.

Abstract

Terminally differentiated/non-dividing macrophages contain extremely low cellular dNTP concentrations (20-40 nm), compared with activated CD4(+) T cells (2-5 μm). However, our LC-MS/MS study revealed that the non-canonical dUTP concentration (2.9 μm) is ∼60 times higher than TTP in macrophages, whereas the concentrations of dUTP and TTP in dividing human primary lymphocytes are very similar. Specifically, we evaluated the contribution of HIV-1 reverse transcriptase to proviral DNA uracilation under the physiological conditions found in HIV-1 target cells. Indeed, biochemical simulation of HIV-1 reverse transcription demonstrates that HIV-1 RT efficiently incorporates dUTP in the macrophage nucleotide pools but not in the T cell nucleotide pools. Measurement of both pre-steady state and steady state kinetic parameters of dUTP incorporation reveals minimal selectivity of HIV-1 RT for TTP over dUTP, implying that the cellular dUTP/TTP ratio determines the frequency of HIV-1 RT-mediated dUTP incorporation. The RT of another lentivirus, simian immunodeficiency virus, also displays efficient dUTP incorporation in the dNTP/dUTP pools found in macrophages but not in T cells. Finally, 2',3'-dideoxyuridine was inhibitory to HIV-1 proviral DNA synthesis in macrophages but not in T cells. The data presented demonstrates that the non-canonical dUTP was abundant relative to TTP, and efficiently incorporated during HIV-1 reverse transcription, particularly in non-dividing macrophages.

摘要

终末分化/非分裂的巨噬细胞的细胞内 dNTP 浓度(20-40nm)非常低,与活化的 CD4(+)T 细胞(2-5μm)相比。然而,我们的 LC-MS/MS 研究表明,非经典的 dUTP 浓度(2.9μm)在巨噬细胞中约比 TTP 高 60 倍,而在分裂的人原代淋巴细胞中,dUTP 和 TTP 的浓度非常相似。具体来说,我们评估了 HIV-1 逆转录酶在 HIV-1 靶细胞中发现的生理条件下对前病毒 DNA 尿嘧啶化的贡献。事实上,HIV-1 逆转录的生化模拟表明,HIV-1 RT 能够有效地将 dUTP 掺入巨噬细胞核苷酸池中,但不能掺入 T 细胞核苷酸池中。dUTP 掺入的预稳态和稳态动力学参数的测量揭示了 HIV-1 RT 对 TTP 相对于 dUTP 的最小选择性,这意味着细胞内 dUTP/TTP 比值决定了 HIV-1 RT 介导的 dUTP 掺入的频率。另一种慢病毒,猴免疫缺陷病毒的 RT,也在巨噬细胞中发现的 dNTP/dUTP 池中显示出高效的 dUTP 掺入,但在 T 细胞中则没有。最后,2',3'-双脱氧尿苷对 HIV-1 前病毒 DNA 合成在巨噬细胞中有抑制作用,但在 T 细胞中则没有。所呈现的数据表明,非经典的 dUTP 相对于 TTP 是丰富的,并且在 HIV-1 逆转录过程中有效地掺入,特别是在非分裂的巨噬细胞中。

相似文献

1
Abundant non-canonical dUTP found in primary human macrophages drives its frequent incorporation by HIV-1 reverse transcriptase.
J Biol Chem. 2011 Jul 15;286(28):25047-55. doi: 10.1074/jbc.M111.234047. Epub 2011 Mar 31.
3
Viral protein X reduces the incorporation of mutagenic noncanonical rNTPs during lentivirus reverse transcription in macrophages.
J Biol Chem. 2020 Jan 10;295(2):657-666. doi: 10.1074/jbc.RA119.011466. Epub 2019 Dec 5.
4
Macrophage tropism of HIV-1 depends on efficient cellular dNTP utilization by reverse transcriptase.
J Biol Chem. 2004 Dec 3;279(49):51545-53. doi: 10.1074/jbc.M408573200. Epub 2004 Sep 26.
5
Frequent incorporation of ribonucleotides during HIV-1 reverse transcription and their attenuated repair in macrophages.
J Biol Chem. 2012 Apr 20;287(17):14280-8. doi: 10.1074/jbc.M112.348482. Epub 2012 Mar 1.
6
Ribonucleoside triphosphates as substrate of human immunodeficiency virus type 1 reverse transcriptase in human macrophages.
J Biol Chem. 2010 Dec 10;285(50):39380-91. doi: 10.1074/jbc.M110.178582. Epub 2010 Oct 5.
7
Effect of ribonucleotides embedded in a DNA template on HIV-1 reverse transcription kinetics and fidelity.
J Biol Chem. 2013 May 3;288(18):12522-32. doi: 10.1074/jbc.M113.458398. Epub 2013 Mar 11.
9
Host SAMHD1 protein promotes HIV-1 recombination in macrophages.
J Biol Chem. 2014 Jan 31;289(5):2489-96. doi: 10.1074/jbc.C113.522326. Epub 2013 Dec 18.

引用本文的文献

1
Insights and progress on epidemic characteristics, pathogenesis, and preventive measures of African swine fever virus: A review.
Virulence. 2025 Dec;16(1):2457949. doi: 10.1080/21505594.2025.2457949. Epub 2025 Mar 6.
2
The Role of Tumor Suppressor p53 Protein in HIV-Host Cell Interactions.
Cells. 2024 Sep 10;13(18):1512. doi: 10.3390/cells13181512.
6
Endogenous toxic metabolites and implications in cancer therapy.
Oncogene. 2020 Aug;39(35):5709-5720. doi: 10.1038/s41388-020-01395-9. Epub 2020 Jul 24.
7
Deficient uracil base excision repair leads to persistent dUMP in HIV proviruses during infection of monocytes and macrophages.
PLoS One. 2020 Jul 14;15(7):e0235012. doi: 10.1371/journal.pone.0235012. eCollection 2020.
8
Ribonucleotide reductase inhibitors suppress SAMHD1 ara-CTPase activity enhancing cytarabine efficacy.
EMBO Mol Med. 2020 Mar 6;12(3):e10419. doi: 10.15252/emmm.201910419. Epub 2020 Jan 17.
9
Crystal Structure of African Swine Fever Virus dUTPase Reveals a Potential Drug Target.
mBio. 2019 Oct 29;10(5):e02483-19. doi: 10.1128/mBio.02483-19.
10
Genome-wide mapping of regions preferentially targeted by the human DNA-cytosine deaminase APOBEC3A using uracil-DNA pulldown and sequencing.
J Biol Chem. 2019 Oct 11;294(41):15037-15051. doi: 10.1074/jbc.RA119.008053. Epub 2019 Aug 19.

本文引用的文献

1
Ribonucleoside triphosphates as substrate of human immunodeficiency virus type 1 reverse transcriptase in human macrophages.
J Biol Chem. 2010 Dec 10;285(50):39380-91. doi: 10.1074/jbc.M110.178582. Epub 2010 Oct 5.
5
Uracil within DNA: an actor of antiviral immunity.
Retrovirology. 2008 Jun 5;5:45. doi: 10.1186/1742-4690-5-45.
9
Human macrophages support persistent transcription from unintegrated HIV-1 DNA.
Virology. 2008 Mar 15;372(2):300-12. doi: 10.1016/j.virol.2007.11.007. Epub 2007 Dec 4.
10
Kinetic mechanism of human dUTPase, an essential nucleotide pyrophosphatase enzyme.
J Biol Chem. 2007 Nov 16;282(46):33572-33582. doi: 10.1074/jbc.M706230200. Epub 2007 Sep 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验