Suppr超能文献

取向硝甲烷单晶体中冲击波的分子动力学模拟。

Molecular dynamics simulations of shock waves in oriented nitromethane single crystals.

机构信息

Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211-7600, USA.

出版信息

J Chem Phys. 2011 Mar 28;134(12):124506. doi: 10.1063/1.3561397.

Abstract

The structural relaxation of crystalline nitromethane initially at T = 200 K subjected to moderate (15 GPa) supported shocks on the (100), (010), and (001) crystal planes has been studied using microcanonical molecular dynamics with the nonreactive Sorescu-Rice-Thompson force field [D. C. Sorescu, B. M. Rice, and D. L. Thompson, J. Phys. Chem. B 104, 8406 (2000)]. The responses to the shocks were determined by monitoring the mass density, the intermolecular, intramolecular, and total temperatures (average kinetic energies), the partitioning of total kinetic energy among Cartesian directions, the radial distribution functions for directions perpendicular to those of shock propagation, the mean-square displacements in directions perpendicular to those of shock propagation, and the time dependence of molecular rotational relaxation as a function of time. The results show that the mechanical response of crystalline nitromethane strongly depends on the orientation of the shock wave. Shocks propagating along [100] and [001] result in translational disordering in some crystal planes but not in others, a phenomenon that we refer to as plane-specific disordering; whereas for [010] the shock-induced stresses are relieved by a complicated structural rearrangement that leads to a paracrystalline structure. The plane-specific translational disordering is more complete by the end of the simulations (6 ps) for shock propagation along [001] than along [100]. Transient excitation of the intermolecular degrees of freedom occurs in the immediate vicinity of the shock front for all three orientations; the effect is most pronounced for the [010] shock. In all three cases excitation of molecular vibrations occurs more slowly than the intermolecular excitation. The intermolecular and intramolecular temperatures are nearly equal by the end of the simulations, with 400-500 K of net shock heating. Results for two-dimensional mean-square molecular center-of-mass displacements, calculated as a function of time since shock wave passage in planes perpendicular to the direction of shock propagation, show that the molecular translational mobility in the picoseconds following shock wave passage is greatest for [001] and least for the [010] case. In all cases the root-mean-square center-of-mass displacement is small compared to the molecular diameter of nitromethane on the time scale of the simulations. The calculated time scales for the approach to thermal equilibrium are generally consistent with the predictions of a recent theoretical analysis due to Hooper [J. Chem. Phys. 132, 014507 (2010)].

摘要

初始温度为 T=200 K 的结晶硝基甲烷在(100)、(010)和(001)晶面受到约 15 GPa 的适度支持冲击的结构弛豫,使用非反应性 Sorescu-Rice-Thompson 力场[D.C.Sorescu、B.M.Rice 和 D.L.Thompson,J.Phys.Chem.B 104,8406(2000)]进行了微观动力学研究。通过监测质量密度、分子间、分子内和总温度(平均动能)、总动能在笛卡尔方向上的分配、垂直于冲击传播方向的径向分布函数、垂直于冲击传播方向的均方位移以及分子旋转弛豫随时间的变化,确定了对冲击的响应。结果表明,结晶硝基甲烷的力学响应强烈依赖于冲击波的方向。沿[100]和[001]传播的冲击波会导致一些晶面发生平移无序,但不会导致其他晶面发生无序,我们称之为面特异性无序;而对于[010],冲击波引起的应力通过复杂的结构重排得到缓解,导致准晶结构。对于沿[001]传播的冲击波,在模拟结束时(约 6 ps),面特异性平移无序比沿[100]传播时更完整。对于所有三个方向,在冲击波前缘附近立即发生分子间自由度的瞬态激发;对于[010]冲击波,这种影响最为明显。在所有三种情况下,分子振动的激发都比分子间激发慢。在模拟结束时,分子间和分子内温度几乎相等,净冲击加热为 400-500 K。作为冲击波通过后时间的函数计算的二维均方分子质心位移的结果表明,在冲击波通过后皮秒时间内,分子平移迁移率最大的是[001],最小的是[010]。在所有情况下,均方根质心位移与模拟时间尺度上硝基甲烷的分子直径相比都很小。达到热平衡的计算时间尺度通常与 Hooper[J.Chem.Phys.132,014507(2010)]的最新理论分析预测一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验