Suppr超能文献

非线性在计算静息态功能磁共振成像脑网络图论性质中的作用。

The role of nonlinearity in computing graph-theoretical properties of resting-state functional magnetic resonance imaging brain networks.

机构信息

Institute of Computer Science AS CR, Pod vodárenskou věží 2, 18207 Prague 8, Czech Republic.

出版信息

Chaos. 2011 Mar;21(1):013119. doi: 10.1063/1.3553181.

Abstract

In recent years, there has been an increasing interest in the study of large-scale brain activity interaction structure from the perspective of complex networks, based on functional magnetic resonance imaging (fMRI) measurements. To assess the strength of interaction (functional connectivity, FC) between two brain regions, the linear (Pearson) correlation coefficient of the respective time series is most commonly used. Since a potential use of nonlinear FC measures has recently been discussed in this and other fields, the question arises whether particular nonlinear FC measures would be more informative for the graph analysis than linear ones. We present a comparison of network analysis results obtained from the brain connectivity graphs capturing either full (both linear and nonlinear) or only linear connectivity using 24 sessions of human resting-state fMRI. For each session, a matrix of full connectivity between 90 anatomical parcel time series is computed using mutual information. For comparison, connectivity matrices obtained for multivariate linear Gaussian surrogate data that preserve the correlations, but remove any nonlinearity are generated. Binarizing these matrices using multiple thresholds, we generate graphs corresponding to linear and full nonlinear interaction structures. The effect of neglecting nonlinearity is then assessed by comparing the values of a range of graph-theoretical measures evaluated for both types of graphs. Statistical comparisons suggest a potential effect of nonlinearity on the local measures-clustering coefficient and betweenness centrality. Nevertheless, subsequent quantitative comparison shows that the nonlinearity effect is practically negligible when compared to the intersubject variability of the graph measures. Further, on the group-average graph level, the nonlinearity effect is unnoticeable.

摘要

近年来,基于功能磁共振成像(fMRI)测量,从复杂网络的角度研究大规模大脑活动的相互作用结构引起了越来越多的关注。为了评估两个脑区之间的相互作用强度(功能连接,FC),最常用的是各自时间序列的线性(皮尔逊)相关系数。由于最近在这个和其他领域讨论了非线性 FC 测量的潜在用途,因此出现了一个问题,即特定的非线性 FC 测量是否比线性测量更能为图分析提供信息。我们比较了使用 24 个人类静息态 fMRI 会话捕获全连接(线性和非线性)或仅线性连接的脑连接图的网络分析结果。对于每个会话,使用互信息计算 90 个解剖区时间序列之间的全连接矩阵。为了进行比较,生成了保留相关性但去除任何非线性的多元线性高斯替代数据的连接矩阵。使用多个阈值对这些矩阵进行二值化,我们生成了对应于线性和全非线性相互作用结构的图。然后通过比较两种类型的图评估的一系列图论度量的值来评估忽略非线性的影响。统计比较表明,局部度量-聚类系数和中间中心性可能受到非线性的影响。然而,随后的定量比较表明,与图度量的个体间变异性相比,非线性效应实际上可以忽略不计。此外,在组平均图水平上,非线性效应是不可察觉的。

相似文献

2
Functional connectivity in resting-state fMRI: is linear correlation sufficient?
Neuroimage. 2011 Feb 1;54(3):2218-25. doi: 10.1016/j.neuroimage.2010.08.042. Epub 2010 Aug 25.
3
Interpreting temporal fluctuations in resting-state functional connectivity MRI.
Neuroimage. 2017 Dec;163:437-455. doi: 10.1016/j.neuroimage.2017.09.012. Epub 2017 Sep 12.
5
Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI.
Neuroimage Clin. 2016 Feb 18;11:302-315. doi: 10.1016/j.nicl.2016.02.006. eCollection 2016.
6
Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures.
Neuroimage. 2012 Jan 16;59(2):1404-12. doi: 10.1016/j.neuroimage.2011.08.044. Epub 2011 Aug 23.
7
Test-retest reliability of graph metrics in functional brain networks: a resting-state fNIRS study.
PLoS One. 2013 Sep 9;8(9):e72425. doi: 10.1371/journal.pone.0072425. eCollection 2013.
8
Identifying patients with Alzheimer's disease using resting-state fMRI and graph theory.
Clin Neurophysiol. 2015 Nov;126(11):2132-41. doi: 10.1016/j.clinph.2015.02.060. Epub 2015 Apr 1.
9
Mutual Information Better Quantifies Brain Network Architecture in Children with Epilepsy.
Comput Math Methods Med. 2018 Oct 22;2018:6142898. doi: 10.1155/2018/6142898. eCollection 2018.
10
The (in)stability of functional brain network measures across thresholds.
Neuroimage. 2015 Sep;118:651-61. doi: 10.1016/j.neuroimage.2015.05.046. Epub 2015 May 27.

引用本文的文献

4
Tackling the challenges of group network inference from intracranial EEG data.
Front Neurosci. 2022 Dec 1;16:1061867. doi: 10.3389/fnins.2022.1061867. eCollection 2022.
5
Dynamical Complexity Fingerprints of Occupation-Dependent Brain Functional Networks in Professional Seafarers.
Front Neurosci. 2022 Mar 18;16:830808. doi: 10.3389/fnins.2022.830808. eCollection 2022.
6
Causality in Reversed Time Series: Reversed or Conserved?
Entropy (Basel). 2021 Aug 17;23(8):1067. doi: 10.3390/e23081067.
7
Open Access: The Effect of Neurorehabilitation on Multiple Sclerosis-Unlocking the Resting-State fMRI Data.
Front Neurosci. 2021 May 28;15:662784. doi: 10.3389/fnins.2021.662784. eCollection 2021.
8
Emergence of canonical functional networks from the structural connectome.
Neuroimage. 2021 Aug 15;237:118190. doi: 10.1016/j.neuroimage.2021.118190. Epub 2021 May 19.

本文引用的文献

1
MEG connectivity analysis in patients with Alzheimer's disease using cross mutual information and spectral coherence.
Ann Biomed Eng. 2011 Jan;39(1):524-36. doi: 10.1007/s10439-010-0155-7. Epub 2010 Sep 8.
2
Functional connectivity in resting-state fMRI: is linear correlation sufficient?
Neuroimage. 2011 Feb 1;54(3):2218-25. doi: 10.1016/j.neuroimage.2010.08.042. Epub 2010 Aug 25.
3
Graph-based network analysis of resting-state functional MRI.
Front Syst Neurosci. 2010 Jun 7;4:16. doi: 10.3389/fnsys.2010.00016. eCollection 2010.
4
Rest-stimulus interaction in the brain: a review.
Trends Neurosci. 2010 Jun;33(6):277-84. doi: 10.1016/j.tins.2010.02.006. Epub 2010 Mar 11.
5
What can spontaneous fluctuations of the blood oxygenation-level-dependent signal tell us about psychiatric disorders?
Curr Opin Psychiatry. 2010 May;23(3):239-49. doi: 10.1097/YCO.0b013e328337d78d.
6
Drug effect on EEG connectivity assessed by linear and nonlinear couplings.
Hum Brain Mapp. 2010 Mar;31(3):487-97. doi: 10.1002/hbm.20881.
7
Correspondence of the brain's functional architecture during activation and rest.
Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5. doi: 10.1073/pnas.0905267106. Epub 2009 Jul 20.
8
Synchronization phenomena in human epileptic brain networks.
J Neurosci Methods. 2009 Sep 30;183(1):42-8. doi: 10.1016/j.jneumeth.2009.05.015. Epub 2009 May 28.
9
Time-varying surrogate data to assess nonlinearity in nonstationary time series: application to heart rate variability.
IEEE Trans Biomed Eng. 2009 Mar;56(3):685-95. doi: 10.1109/TBME.2008.2009358. Epub 2008 Dec 2.
10
Characterization of the nonlinear content of the heart rate dynamics during myocardial ischemia.
Med Eng Phys. 2009 Jul;31(6):660-7. doi: 10.1016/j.medengphy.2008.12.006. Epub 2009 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验