解析静息态功能磁共振连接成像中的时变波动。
Interpreting temporal fluctuations in resting-state functional connectivity MRI.
机构信息
Department of Electrical and Computer Engineering, ASTAR-NUS Clinical Imaging Research Centre, Singapore Institute for Neurotechnology and Memory Networks Program, National University of Singapore, Singapore.
Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
出版信息
Neuroimage. 2017 Dec;163:437-455. doi: 10.1016/j.neuroimage.2017.09.012. Epub 2017 Sep 12.
Resting-state functional connectivity is a powerful tool for studying human functional brain networks. Temporal fluctuations in functional connectivity, i.e., dynamic functional connectivity (dFC), are thought to reflect dynamic changes in brain organization and non-stationary switching of discrete brain states. However, recent studies have suggested that dFC might be attributed to sampling variability of static FC. Despite this controversy, a detailed exposition of stationarity and statistical testing of dFC is lacking in the literature. This article seeks an in-depth exploration of these statistical issues at a level appealing to both neuroscientists and statisticians. We first review the statistical notion of stationarity, emphasizing its reliance on ensemble statistics. In contrast, all FC measures depend on sample statistics. An important consequence is that the space of stationary signals is much broader than expected, e.g., encompassing hidden markov models (HMM) widely used to extract discrete brain states. In other words, stationarity does not imply the absence of brain states. We then expound the assumptions underlying the statistical testing of dFC. It turns out that the two popular frameworks - phase randomization (PR) and autoregressive randomization (ARR) - generate stationary, linear, Gaussian null data. Therefore, statistical rejection can be due to non-stationarity, nonlinearity and/or non-Gaussianity. For example, the null hypothesis can be rejected for the stationary HMM due to nonlinearity and non-Gaussianity. Finally, we show that a common form of ARR (bivariate ARR) is susceptible to false positives compared with PR and an adapted version of ARR (multivariate ARR). Application of PR and multivariate ARR to Human Connectome Project data suggests that the stationary, linear, Gaussian null hypothesis cannot be rejected for most participants. However, failure to reject the null hypothesis does not imply that static FC can fully explain dFC. We find that first order AR models explain temporal FC fluctuations significantly better than static FC models. Since first order AR models encode both static FC and one-lag FC, this suggests the presence of dynamical information beyond static FC. Furthermore, even in subjects where the null hypothesis was rejected, AR models explain temporal FC fluctuations significantly better than a popular HMM, suggesting the lack of discrete states (as measured by resting-state fMRI). Overall, our results suggest that AR models are not only useful as a means for generating null data, but may be a powerful tool for exploring the dynamical properties of resting-state fMRI. Finally, we discuss how apparent contradictions in the growing dFC literature might be reconciled.
静息态功能连接是研究人类功能脑网络的有力工具。功能连接的时间波动,即动态功能连接(dFC),被认为反映了大脑组织的动态变化和离散脑状态的非平稳切换。然而,最近的研究表明,dFC 可能归因于静态 FC 的抽样变异性。尽管存在争议,但文献中缺乏对 dFC 的稳定性和统计检验的详细阐述。本文旨在深入探讨这些统计问题,既吸引神经科学家也吸引统计学家。我们首先回顾了统计学中的稳定性概念,强调其依赖于总体统计。相比之下,所有的 FC 测量都依赖于样本统计。一个重要的结果是,平稳信号的空间比预期的要广泛得多,例如,包括广泛用于提取离散脑状态的隐马尔可夫模型(HMM)。换句话说,平稳并不意味着不存在脑状态。然后,我们阐述了 dFC 统计检验的假设。事实证明,两种流行的框架——相位随机化(PR)和自回归随机化(ARR)——产生了平稳的、线性的、高斯的零数据。因此,统计拒绝可能是由于非平稳性、非线性和/或非高斯性。例如,由于非线性和非高斯性,对于静止的 HMM,零假设可能会被拒绝。最后,我们表明,一种常见形式的 ARR(双变量 ARR)与 PR 和改进的 ARR(多变量 ARR)相比,容易出现假阳性。PR 和多变量 ARR 应用于人类连接组计划数据表明,对于大多数参与者,平稳的、线性的、高斯的零假设不能被拒绝。然而,不能拒绝零假设并不意味着静态 FC 可以完全解释 dFC。我们发现,一阶 AR 模型可以更好地解释时间 FC 波动,而不是静态 FC 模型。由于一阶 AR 模型既编码了静态 FC 又编码了一个滞后的 FC,这表明存在超出静态 FC 的动态信息。此外,即使在零假设被拒绝的受试者中,AR 模型也能更好地解释时间 FC 波动,这表明不存在离散状态(如静息态 fMRI 所测量的)。总的来说,我们的结果表明,AR 模型不仅是生成零数据的有用工具,而且可能是探索静息态 fMRI 动力学特性的有力工具。最后,我们讨论了如何调和日益增长的 dFC 文献中的明显矛盾。